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Explorations: Conducting Empirical Research in Canadian Political Science (4th Edition) 

 R Handbook 

David Armstrong, Jason Roy and Loleen Berdahl 

Welcome to the Explorations: Conducting Empirical Research in Canadian Political Science R Handbook!  In 
this handbook, we provide you with a basic introduction to R. The procedures outlined follow from the 
statistical methods described in Explorations: Conducting Empirical Research in Canadian Political Science 
(4th Edition). We encourage you to work closely with the textbook as you move through this handbook; here 
we cover the technical “how to” of basic statistics, but we do not cover the critical issues of which statistics to 
use when. We use 2019 Canadian Election Study (CES) data. As we explain throughout the textbook, the CES 
data are a great publicly available resource for studying politics in Canada. We encourage you to practice the 
techniques outlined in this handbook with the CES datasets. 

To follow the procedures below, download and open the 2019 CES dataset (we use the telephone survey), 
available for free at https://doi.org/10.7910/DVN/8RHLG1.You should also download the 2019 CES 
technical documentation and codebook for reference.	
	
Please note that the screen shots included are those captured working with RStudio (v1.2.1335) on a Mac. R is 
an open-source statistical computing environment and can be downloaded freely from https://cran.r-
project.org/. Both SPSS and Stata – other software covered in Explorations handbooks are their own integrated 
development environments (or IDEs).  To make R most useful, you need to download an IDE for R.  There are 
lots of options here, but the one we are going to use is RStudio Desktop, which is also open-source and can be 
downloaded freely from https://rstudio.com/products/rstudio/download/.  The appearance of the RStudio work 
environment may differ across operating systems.  

Part I: Getting Comfortable with R 
 

Destination 
By the end of this section, you will be able to: 

• navigate between RStudio windows; 

• explain what an R script file is, and why it is a valuable tool for researchers; 

• download and enable R packages; 

• record your work in R; 

• open a dataset in RStudio; and 

• use search functions 
	
The RStudio work environment consists of a number of windows/screens, each with different information. 
(Note: The windows that are displayed when you first open RStudio will vary according to the current context 
and any user settings that have been applied.) The RStudio interface generally has four tiles (or sub-windows).  
You should see something similar to the view below if you choose File > New File > R Script.  
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The features in the four tiles are described below.  
 
• The Script Editor window (upper-left above) is a workspace where you can write, edit, and save R 

commands. Rather than entering these commands in the console window, you can run them from the 
script editor. The advantage is that you can easily edit, save and re-run all your analyses. We strongly 
recommend working with a script file in R. Doing so allows you to record all of the procedures that you 
run and easily re-produce all results as needed. It also allows you to easily collaborate with colleagues 
working on the same project with you, and to share a history of your analysis with others, thus 
increasing research transparency. (See Chapter 3 for a discussion of ethics and data analysis.) Users can 
add a number sign (#) at any point in a line of code and anything that follows it will be interpreted by 
R as a comment and not a command to be executed. You can use comments to leave notes to yourself 
or your colleagues or to add a title to the file.  To run a command from the script file, place your cursor 
on the line you want to execute and click the “Run Current Line” icon at the top left corner of the script 
editor.  You may also use the short-cut keys: command + return on a Mac or CTRL + Enter with a 
Windows operating system. Note that R will return an error if you select only part of a command. 
Therefore, be sure to only place your curser on the line you wish to execute or select the entire 
command.  

• The Environment Window (upper-right above) gives you a list of all of the objects you have created.  
This could include data frames (data sets), statistical model results and sometimes graphs, depending 
on how they were created. This tile also has a “History” tab which captures the recent functions you 
have executed in R.  

• The Console window (lower-left above) displays results. You can also interact with R directly in the 
console window by typing commands and having them executed in the window, but doing this is not 
as desirable as using the script editor since your commands will not be recorded for later use.  
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• The Files window (lower-right above) provides a lot of information.  The files tab gives you a file 
explorer.  The plots tab provides a history of the graphs you have made.  The packages tab shows you 
the packages that you have available and the ones you have enabled.  The help tab allows you to see 
help files for functions and packages.  Occasionally, things you are trying to see , particularly any html 
output (for example, from the dataTable function) will show up in the viewer tab; it is pretty rare that 
things show up here.   

	
This brings us to the first big different between Stata/SPSS and R.  R comes packaged with some very basic 
functionality, but for lots of tasks, you will need to download an R package1 and then enable that package for 
your R session.  You can do this through RStudio by navigating to the Tools dropdown menu and then 
choosing Install packages …  
 
 
 
 
 

 
This will bring up the dialog box below.  Follow the steps to install packages from the internet.  You will 
only need to do this one time for each version of R.  That is to say, until you upgrade R to a new version, you 
will not have to go through this step again.  Note that packages often depend on other packages.  Making sure 
the “Install dependencies” box is checked will ensure that you download all of the necessary packages.  
 
For example, to import data into R, you will need to install a package called {haven}.2  To do so, type the 
package name into the “Packages” textbox, make sure “Install dependencies” is checked, and click on the 
“Install” button, as shown in the screen capture below:    
 

 
1	An	R	package	is	a	collection	of	functions	that	expand	R’s	base	functionality.			
2	Throughout this handbook, package names will be placed in braces and printed in Courier font, e.g.,	{haven}.		Functions will 
have parentheses with them, e.g.,	mean().  	
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Throughout this handbook, we will work with a number of packages. We recommend that you follow the 
steps outlined above to install each of the packages listed below in order to follow along with the procedures 
in this handbook. If you’re working on a mac, you will also need to install the X11 windowing environment 
from (https://xquartz.macosforge.org).   
 

{car}  
{dplyr}  
{ggplot2} 
{haven}  
{lattice}  
{remotes}  
{summarytools} 
{survey} 
{weights} 
 

 
After the package is installed, you can enable its use in your R session by using the library() function.  
For example, to load the {haven} package, you could type library(haven) into your script file  and 
then highlight that line and click the “run” button in you script editor.  You will need to do this for each R 
session – that is, each time you open up RStudio.  Add the script below to your script file and run it to enable 
each of the packages that you have installed (and be sure to save your script file frequently): 
 
 library(car) 

library(dplyr) 
library(ggplot2) 
library(haven) 
library(lattice) 
library(remotes) 
library(summarytools) 
library(survey) 
library(weights) 
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A final package required for use with this handbook, {DAMisc}, is available via a different repository. You 
can install it by running the following script in your script file: 
 

install.packages('remotes') 
remotes::install_github('davidaarmstrong/damisc') 
library(DAMisc) 
 

With the packages installed and enabled, we can now import the 2019 CES data. To do so, choose File > 
Import Dataset > From Stata (assuming you have downloaded the data is Stata format): 
 

 
 

This will enable the dialog below.  Follow the steps identified in the figure to read in the data.   
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Clicking	the	“Import”	button	above	will	make	a	new	data	frame	in	R	called	“CES2019”.		The	name	is	one	
that	we	assign	it	and	might	or	might	not	be	the	same	as	the	file	name.3	To	follow	along	with	the	sample	
script	provided	below,	we	recommend	assigning	the	same	name	(CES2019)	to	your	data	frame.	
	
As we near the end of this section, we want to highlight additional R resources. We provide the syntax 
necessary to run the procedures outlined in this handbook. However, because the syntax presented here is only 
a small sample of what can be done in R, you should familiarize yourself with how to find help and new 
packages and functions in R.  The help tab (located in the lower- right tile) provides access to all of the help 
files that you have available on your computer along with some other resources.  The home screen for the help 
tab looks like this:  

 

 
3 In R, the term data frame refers to a dataset.  You can have multiple data frames open simultaneously, thus the need to provide it 
a name.   
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Typing a term into the search box in the upper-right corner of the help panel will search through the help files 
available on your computer.  Note that there may be functions available to R that you have not installed yet.  
These will not be returned when searching the help files.  There are a couple of great resources for R users to 
find new packages or help files that might not exist locally.  The website https://rdrr.io/ is an online explorer 
for help files and documentation for R and its related packages.  The website https://rseek.org/ is similar, though 
also provides access to packages and other web resources, too.  The R Stack Overflow page is also a good 
source of help with R (https://stackoverflow.com/questions/tagged/r).  Once you find a function that you need, 
you should see whether you have the package already (many packages get downloaded as dependencies, so 
you probably have downloaded more packages than you think).  You can do that by going to the “Packages” 
tab in the  lower- right tile of RStudio, as shown below:  

	

	
 
If you do not find the package you need, refer back to earlier in this section about how to install and load 
packages.  
 
Check-In Point 
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If you are working alongside us, at this point you have opened the 2019 CES dataset in R. You have explored 
a variety of R windows to increase your familiarity with the various screens available to you. You now know 
what a script file is and why it is a valuable tool for researchers.  Finally, being aware that this handbook 
teaches you only a small amount of R’s capacities, you are familiar with how to search the help files and 
search for new functions. 
 
With this foundation in place, you are ready to continue your explorations.  
 

Part II: Familiarizing Yourself with Variables in the Dataset 
 
Destination 
By the end of this section, you will be able to: 

• use codebook and other commands to familiarize yourself with the variables in the dataset. 
 
Once	you	have	opened	your	dataset,	you	will	want	to	take	a	preliminary	look	at	the	variables.	4	There	are	
several	commands	that	are	particularly	useful:		
 

dfSummary – displays a frequency distribution of the variable and its label for the entire dataset 

inspect – displays a frequency distribution of the variable and its label for a single variable 

sumStats– provides summary statistics, such as means and standard deviations.  

You can use these commands by typing them in the Command window or in your Script file.  
 
As discussed in Chapter 8, when using secondary datasets such as the CES, it is important to familiarize 
yourself with the dataset before conducting your analyses. Your first step to do so is to generate a codebook 
for the dataset. To do this, you can use the dfSummary() function from the {summarytools} package. 
Before doing that, though, we need to discuss how R stores variables.  Broadly speaking, there are two general 
types of data in R – numeric (which covers interval and ratio) and factor (which are categorical variables – 
nominal and ordinal).  The {haven} package, which we use to read in our data, has a class of data called 
haven_labelled.  This indicates that the variable probably should be a factor.  This class is used to ensure that 
the original attributes of the data are preserved (i.e., all of the original numerical values remain the same in the 
data when it is imported into R).  For the data frame summary function to work properly, we should turn all of 
the haven_labelled  variables into factors.  Before working through the following commands, make sure that 
the {dplyr} and {summarytools} packages are loaded (see above).   We could do this with the following 
commands in R.5  

	
# enable the two packages needed if not already enabled (see above) 
library(dplyr) 
library(summarytools) 
# change all haven_labelled variables to factors 
CES2019b <- mutate_if(CES2019, is.labelled, as_factor) 
# send all of the subsequent output to the file “codebook.txt” 

 
4	We also recommend reviewing the technical documentation and codebooks available for download with the dataset. The latter 
provides a listing of the survey questions asked, their corresponding variable name, and the response categories.	
5	Recall that in the code, the # indicates a comment. The script assume you have named your data frame “CES2019”. If you have 
used another name, you will need to edit the script accordingly. 
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sink("codebook.txt") 
# print a summary of the dataset 
dfSummary(CES2019b, plain.ascii=TRUE) 
# print the output back to the console 
sink() 
	
The	mutate_if()	function	is	from	the	{dplyr}	package	and	it	changes	the	variables	in	a	dataset	if	
the	variables	meet	some	criterion.		In	R	there	are	lots	of	is.X()	functions	that	identify	whether	a	
variable	or	object	has	a	certain	property.		We	are	using	the	is.labelled()	function	to	figure	out	
whether	or	not	a	variable	has	the	class	haven_labelled.	If	it	does,	we	want	to	turn	that	variable	into	a	
factor	with	the	as_factor()	function,	also	from	the	{haven}	package.		The	sink(<filename>)	
function	sends	the	subsequent	output	to	the	file	and	continues	to	do	that	until	you	issue	the	command	
sink()	(without	the	filename)	to	return	printing	to	the	console	(i.e.,	the	console	window	in	RStudio).		
The code above will produce a file called “codebook.txt” visible under the Files tab of the lower-right tile. 
Clicking on this file name will display the summary results in the upper-left tile. You can scroll through these 
results to view information on all of the variables included in the 2019 CES. Here	is	an	example	of	how	a	
couple	of	lines	of	the	summary	look	(note	that	you	can	expand	each	of	the	tile	windows	as	needed	to	
view	the	content):		
	

	
	
From	the	summary	results,	you	can	view	the	variable	name,	variable	label,	frequency	distribution	and	
graph	as	well	as	valid	and	missing	observations	for	each	variable	in	the	dataset.	For a very large dataset 
such as the CES, the information provided can be overwhelming, given the number of variables in the 2019 
CES dataset. One solution is to limit the results by listing only the variables you wish to explore after the 
command. To do this, you need to find the variable names. You then simply list these after the codebook 
command. 
	

Tip: You can search for variables containing key words in the dataset by using the function 
searchVarLabels() from the {DAMisc} package. Running the following in the console or 
your script file will enable the {DAMisc} package that can then be used to generate a list of all 
variables that include the word “vote” in the variable name or label: 
 

# enable the package needed if not already enabled (see above) 
library(DAMisc) 
 
# search the CES2019 data frame for any labels that contain the 
word “vote” 
searchVarLabels(CES2019, "vote") 

	
To practice, let’s look at two additional variables in the dataset. The first, q6, reports the level of satisfaction 
with the way democracy works in Canada. The second, p3, reports the respondents’ vote choice in the 2019 
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Canadian federal election. In your script file, add the following commands:  

 
# enable the packages needed if not already enabled (see above) 
library(summarytools) 
library(dplyr) 
 
 
CES2019b %>% 

  select(q6, p3) %>%  
  mutate_if(is.labelled, as.factor) %>%  
  dfSummary(., plain.ascii=TRUE) 
 
There	are	a	couple	of	additional	things	here	that	we	haven’t	seen	already.		The	first	is	the	pipe	operator	
%>%.  This operator takes whatever is on the left side of it and sends it to the function on the right side of 
it. Another new function	is	select()	from	the	{dplyr}	package	–	this	function	selects	a	subset	of	
variables	from	the	dataset,	here	q6	and	p3.	Then	this	dataset	with	two	variables	is	passed	to	the	
mutate_if()	function	to	turn	labelled	variables	into	factors	and	then	that	dataset	with	factors	is	
sent	to	the	dfSummary()	function.		Note	that	the	first	argument	of	dfSummary()	is	a	dataset.		
Whenever	you	are	using	the	pipe	character,	the	result	being	passed	to	the	right	side	of	the	pipe	can	
always	be	accessed	with	the	period.		That’s	why	the	period	is	the	first	argument	to	the	dfSummary()	
function.	 
	
To execute the commands, block (select) the lines and then hit the “Run” button at the top-right corner of the 
script window. (Reminder: you can also use the short-cut keys: command + return on a Mac or CTRL + Enter 
with a Windows operating system.) Compare your results with ours, reported below. 

  

 
 

The results above provide a wealth of information. For example, looking at the results for q6, we find the 
variable name (q6), the variable label (q6 -- On the whole, are you very satisfied, fairly satisfied, not very 
satisfied), the range of values, the frequency distribution (raw and relative frequencies) and the the number of 
missing (0) and valid (4021) cases.  There is also a bar chart that plots the frequency distribution.   
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Other commands listed above can provide subsets of this information, for example, inspect () will report the 
variable name, variable and value labels, and the frequency distribution (raw and relative frequencies). Try 
this for yourself: 
 

1. In	your	script	file,	type	the	following:		
library(DAMisc) 

inspect(CES2019b, "p3") 	
inspect(CES2019b, "q6")	

2. Select the line and then click on the “run” icon in the top right corner of the script file screen. 
(Reminder: you can also use the short-cut keys: Command + return on a Mac or CTRL + Enter with a 
Windows operating system.) 

3. Compare your inspect() results with your dfSummary() results. 

4. The sumStats() function from the {DAMisc} package has the same required arguments (syntax) 
as the inspect() function – sumStats(data, variable-name).  Use it to get the 
summary statistics for the p3 and q6 variables.  

 
Check- In Point 
 
If you are working alongside us, at this point you have used a number of basic commands to examine two 

variables in the dataset. Before you move forward, be sure to practice these skills: Use the 

searchVarLabels() function to identify variables in an area of interest to you. Once you have the 

variable names, experiment with different commands, using your script file. 

 
Part III: Applying Survey Weights 

 
Destination 
By the end of this section, you will be able to: 

• explain why survey weights are often used in analysis. 
 
As we discuss in Chapter 5, when researchers sample from populations, they often over-sample certain 
population segments and then create design weights to adjust for over or under representation of certain 
segments of the population. When you use secondary survey datasets, be sure to consult the metadata 
(technical documentation, as discussed in Chapter 8) to review information on the sampling procedures and 
weight variables.  
 
The 2019 CES employs a disproportionate random sampling technique that oversamples in some areas of the 
country, such as Quebec, while under sampling in others. The CES dataset includes two weight variables, 
weight_CES and weight_PES, to account for provincial over/under sampling as well as phone ownership 
(landline and/or cell phone. See CES technical documentation for more details). The former weights 
according to the full sample and the latter is a weight based on only those respondents who completed both 
waves of the survey (campaign period and post-election). We use the full sample weight (weight_CES) in our 
analyses.  
 
The {survey} package in R allows you to incorporate weights into many common statistical routines.  
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The main method for doing this is by defining a survey design object that will get used as the data.  For 
example, with the 2019 CES, using the “weight_CES” variable, we would do the following:  
 
library(survey) 
ces_svy <- svydesign(ids=~1, strata=NULL, weights=~weight_CES, 
  data=CES2019, digits=3) 
 
Then, for some commands, instead of using the “CES2019” data object as the source of the data, we will use 
the “ces_svy” object.  Unlike other programs, such as Stata, R only has one way of including weights 
generally (which is similar to the svyset in Stata).  R also does not make the distinction between analytical 
weights and probability weights, as Stata does, but in different settings it provides results that are equivalent 
to either probability weights or analytical weights.  We include the syntax to weight the CES data in the 
examples in the following sections where possible. As you work through this handbook, be sure to reflect 
upon how the use of survey weights affects the results. 
 
Check-In Point 
 
Survey weights can be a challenging idea for many new researchers. Before you move forward, ensure that 
you are comfortable with your understandings. Why do researchers use survey weights? How can you as a 
user of secondary survey datasets determine how the original researchers constructed their survey weights? 
We encourage you to review both Chapter 5 and Chapter 8 of the Explorations textbook before moving 
forward to the next section.  

 	
Part IV: Examining Frequency Distributions and Univariate Statistics 

 
Destination 
By the end of this section, you will be able to: 

• generate frequency distributions; 

• apply survey weights; and 

• generate univariate statistics. 

 

In Chapter 12, we discuss how researchers start their analyses by examining the frequency distributions and 

summary statistics for each individual variable in their analysis. These can be generated in several ways in R. 

The way that will be most useful for us, particularly in terms of pivoting between weighted and unweighted 

data, is the xt() function from the {DAMisc} package: 

 
xt(data, row-variable)  

 
Try this for yourself to generate a frequency table for the satisfaction with the way democracy works in 
Canada variable: 

 
1. In	your	script	file,	type	the	following:	xt(CES2019b, "q6")	

2. Select the line and then click on the “run” icon in the top right corner of the script file screen. 
(Reminder: you can also use the short-cut keys: Command + return on a Mac or CTRL + Enter 
with a Windows operating system.) 
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3. Compare your results with the results displayed below. 

 
 

 
 

Note that the results include the raw frequency and relative frequency. 
 
In the previous section, we discussed survey weights, and noted that to apply weights we simply generate a 
survey design object and then use that as input to the function.  Let’s do this now, re-running our function to 
account for the disproportionate random sample by weighting the data.  
 

1. In your Script file, type the following:   
xt(CES2019b, "q6", weight="weight_CES") 

2. Select the line and then click on the “run” icon in the top right corner of the script file screen. 
(Reminder: you can also use the short-cut keys: command + return on a Mac or CTRL + Enter with a 
Windows operating system.) 

3. Compare your results with the results displayed below, and with your original results. Note how the 
addition of the weight variable affects the results. 
 

	  
 

 
In examining a variable, you will also want to consider the appropriate measures of central tendency and 
dispersion. (Review Chapter 12 if you need refreshing on the appropriate measures of central tendency and 
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dispersion by variable level.) As noted earlier, the frequency distribution results include the raw frequency 
and the relative frequency. This is an ordinal variable, and from these results you can visually identify the 
appropriate measure of central tendency (median) and dispersion (range). To move beyond a visual 
assessment, you can use a related R command that allows you to specify the summary statistics that you wish 
to view. Note that R does not include the mode or the variation ratio as summary statistics. Fortunately, both 
are easily identified with the information reported in the frequency distribution table (again, see Chapter 12).   
 
For example, to obtain the median and range for this variable we would run the following command to 
produce the results reported below: 

1. In your 	script	file, type the following:  
sumStats(CES2019, "q6", weight="weight_CES") 

2. Select the line and then click on the “run” icon in the top right corner of the script file screen. 
(Reminder: you can also use the short-cut keys: Command + return on a Mac or CTRL + Enter with a 
Windows operating system.) 

3. Compare your results with the results displayed below. 

 

 
 
Let’s interpret these univariate statistics, starting with the median. R reports lots of things, but the two we are 
interested in for this example are the median and the range. The former is reported as 50% (the 50th 
percentile), which is reported as “2”. Note that these are the actual values for the variable, not the value 
labels as reported in the frequency distribution. To determine the value labels associated with these values, 
you could use the following command:  
 

attr(CES2019$q6, "labels")  
 
Based on the results, we see that the value label for 2 is “Fairly satisfied”.  Recall from Chapter 12 that the 
range is estimated by subtracting the lowest value from the highest value.  We could calculate the range as 
the difference between the 100% value (4) and the 0% value (-9).  In this case, the range is equal to 13.  But 
how do we interpret this? When you look at the range result, the number should strike you as a bit curious – 
how does a variable with four possible response categories have a range of 13? When you see results like 
this, you should always ask questions and seek out the answer. In this case, the answer lies with the coding. 
In the CES dataset “don’t know” is coded as  -9 (see above). Thus, R produced the range as (4)-(-9) for a 
range of 13. In this example, some recoding is necessary to estimate the range. We will return to this topic 
shortly; for now, simply know that it is always important to critically assess your results, as statistical 
software will not catch such issues for you! 

 
Check-In Point 
 
At this point, you should understand how to use the R xt() and sumStats() functions to generate 
frequency distributions and univariate statistics (specifically the median and the range). You should also be 
able to add syntax to your command to apply survey weights. Before moving forward, be sure to practice 
these skills with other variables, using the codebook to help interpret categories and to identify curious 
results that may reflect coding. Be sure as well to continue to compare how results change with the addition 
of the survey weight.  
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Part V: Creating and Recoding Variables  

 
Destination 
By the end of this section, you will be able to: 

• explain why you should never recode original variables; 

• create new variables;  

• recode variables; and 

• rename variables and add or alter variable labels. 
 
As we have already observed, it is often necessary to recode variables before you can work them. As a rule, 
we recommend never altering original variables within a dataset. We will repeat this, in case you are reading 
quickly: never alter original variables in a dataset. Instead, you should generate a new variable from the 
original and then make the transformations you need to your new variable. There are two reasons for this: (1) 
it allows you to check your work by comparing the recoded variable against the original one, and (2) 
maintaining the original variable allows you to use a different transformation processes if you need to do so at 
a later time.  

	
Creating	New	Variables	

To	create	a	new	variable,	we	use the mutate() function from the {dplyr} package. We select a new 
variable name for the new variable, and then command R to create a new variable from the existing variable. 
Let’s consider this with variable q6 from the 2019 CES. You are going to create a new variable named 
satdemocracy (remember that the variable looks at satisfaction with democracy).  

 
1. In your Script file, type the following: CES2019 <- mutate(CES2019, 

satdemocracy=q6) 

2. Select the line and then click on the “run” icon in the top right corner of the script file screen. 
(Reminder: you can also use the short-cut keys: command + return on a Mac or CTRL + ENTER with 
a Windows operating system.) 

When you generate a new variable, you can confirm your work by comparing the original variable and the 
new variable in a cross-tabulation (we discuss cross-tabulation in more detail below). Note that using a cross-
tabulation to check your recoding is only advisable when working with nominal or ordinal level variables. 
For interval/ratio level variables, we use a frequency distribution, as demonstrated below. To produce this 
cross-tabulation, you can use the table() function:  
 

1. In your Script file, type the following: with(CES2019, table(q6, satdemocracy))6 

2. Select the line and then click on the “run” icon in the top right corner of the Script file screen. 
(Reminder: you can also use the short-cut keys: command + return on a Mac or CTRL + ENTER with 

 
6  Because R allows you to have multiple data frames in memory at once, unlike Stata and SPSS, you need to identify in R 
functions where to find the variables (i.e., which data frame the variables are in).  You can do this in several ways.  In many 
functions, there is a “data” argument, where you could say, for example, data=CES2019.  The table() function doesn’t have such an 
argument, so we used the with() function which takes the following form: with(data, function()) where this forces function() to use 
the designated data file. The other option is to use the dollar sign $ to extract a variable from a dataset.  We could have done the 
same thing above with:  table(CES2019$q6, CES2019$satdem). 
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a Windows operating system.) 

3. Look at the intersection of the original values in the row and the new values in the column. 
Because we didn’t change the values of the variable, we simply copied it, we should only see observations in 
the cells where the old and new values are the same (e.g., the -9 row and the -9 column).  The 
“satdemocracy” variable will have all of the same properties as the “q6” variable.   
 
There are a number of more advanced options for the mutate() function, including the option of 
combining multiple variables to generate a single measure. This is part of a host of mathematical calculations 
that can be used with mutate(). We do not cover these more advanced procedures in this introductory 
handbook but encourage interested users to seek out additional information on the various expressions that 
can be used with mutate() (along with other ways that the mutate() function can be used) via the R 
help files.   
	
Recoding	Variables	
	
Once	you	have	created	the	new	variable,	you	can	begin	making	transformations	to	meet	your	research	
needs.	For example, let’s say you want to transform satdemocracy to remove cases that report “Don’t know” 
or “Refused”. Recall from the last section that the range for q6 was nonsensical given the inclusion of these 
responses, which are coded as -9 and -8, respectively. Given that we cannot be sure how individuals who 
answered “Don’t know” or “Refused” feel about the way democracy works in Canada, we want to exclude 
these cases from our new variable for our analysis.  
 
In R, missing cases are denoted as NA. The way that recoding works in R depends on the type of variable 
you’re working with.  Recall that we made two different versions of our dataset.  The CES2019 data frame 
has only numeric values and the CES2019b data frame converted anything with variable labels to factors.  In 
Stata and SPSS, variables with labels are still treated as numeric and the numeric information in the variable 
is preserved.  This is not the case for factors in R – R treats these variables more like words than numbers.  
First, we will discuss how to recode the -9 and -8 values to missing.  For this part of the analysis, we will use 
the recode() function from the {car} package.7  We can do this for individual values (option A), we can 
use a range instead of noting each value separately (option B) or we can specify a set of values to all be 
recoded as the same value (option C): 
 
Option A: CES2019 <- mutate(CES2019,  

satdemocracy = car::recode(q6, "-9=NA; -8=NA")) 
 
Option B: CES2019 <- mutate(CES2019,  

satdemocracy = car::recode(q6, "-9:-8=NA")) 
 
Option C: CES2019 <- mutate(CES2019,  

satdemocracy = car::recode(q6, "c(-9,-8)=NA")) 
 
Not that in all cases, the recode() syntax has the following characteristics.  First, all recodes are inside a 
single set of quotation marks.  Each different recode statement, within the one single set of quotation marks, 
is separated by a semi-colon (;).  The range operator used in option B is the colon (:).  It indicates every value 

 
7  One of the down-sides of having many of the useful functions in R being contributed in packages by developers is that 
sometimes two packages have the same function in them.  This happens here as there are recode() functions in both the {car} 
package (which is the one we want to use) and the {dplyr} package, which we loaded to use the mutate() function.  These two 
functions work differently.  You can ensure you’re using the right function by executing it with the following convention: 
package::function(), in this case it would be car::recode(). 
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between (and including) the two end points.  The c() function used in option C is the concatenate operator.  
It allows us to specify a single object with multiple values.  Whereas option B includes all values between 
(and including) -9 and -8, option C only includes the integer values -9 and -8, but nothing in between.   
 
Recode your missing values now with any of the options above by entering the function into your script file, 
selecting the text, and clicking “run.” It does not matter which option you select; there are often a number of 
ways to achieve the same outcome in R. We outline some of the more simplistic procedures within this 
handbook but recognize that there are other commands that you may use to achieve the same results. 
 
With the newly recoded variable, you should confirm that you have not made any errors. This can be done by 
comparing the new variable to the original variable the same way we did above. To include the missing cases 
(those cases you set to NA) you add the useNA="ifany" argument to the table function as below: 

 
with(CES2019, table(q6, satdemocracy, useNA="ifany")) 

	
Compare	your	results	to	our	own:	

 
 

From the results, we can confirm that we have not made any errors.  Notice that for the “q6” rows -9 and -8, 
we see that their values are now in the <NA> column for “satdemocracy”.   
 
Things get a bit more complex when we are trying to recode the factor variable in the CES2019b data frame.  
Here, the range operator in Option B above doesn’t work, but options A and C still work.  Here is how we 
would do this.  
 
Option A: CES2019b <- mutate(CES2019b, satdemocracy = car::recode(q6,  
              "\"(-9) Don't know\" = NA;  
              '(-8) Refused' = NA"))                            
 
Option C: CES2019b <- mutate(CES2019b, satdemocracy = car::recode(q6,  
              "c(\"(-9) Don't know\",  '(-8) Refused')=NA"))                            
 
The reason things are a bit more complicated here is that we have to put all recode statements in a set of 
quotation marks (they could be either double quotes or single quotes).  Then, we have to identify the values 
we want to recode as strings, too.  So, if we used double quotes to encapsulate the entire set of recode 
statements, we could identify specific values with single quotes.  The problem here (and you will run into it a 
lot in survey data) is that the word “don’t” has an apostrophe in it, which is the same as a single quotation 
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mark.  So, you’ll notice in the code above, we wrap the entire set of recode statements in double quotes and 
we wrap (-9) Don’t Know in what we would call escaped quote marks.  The escape character (\) here makes 
it so that these quotation marks don’t close the double quote mark that started the string and they ensure that 
the apostrophe in Don’t isn’t recognized as an open single quote.  These are kind of esoteric concerns and it 
may not be completely clear how it works, but if you follow the formula above, you should do the right thing.  
 
You can compare your results to those below:  
 

 
 
You’ll notice the same thing as above; the -9 and -8 original values now only have values in the <NA> 
column for “satdemocracy” 
 
What would you do if you discovered that you made a mistake? (For example, say you accidently set the 
value of 4 as missing, when it is in fact not missing). First, you would congratulate yourself for creating new 
variables rather than transforming an original variable, as your problem can be easily fixed. Second, you can 
simply delete a mis-transformed variable in R using the select() function and then re-create it with the 
corrected syntax. For the example above, you would use the following syntax to delete the satdemocracy 
variable: 
 

CES2019 <- select(CES2019, -satdemocracy) 
 
(Please don’t actually do this – we are going to continue working with satdemocracy!) 
 
Renaming variables and adding or altering value labels 

 
The majority of the variables in the 2019 CES dataset include variable and value labels – descriptions of each 
variable, and descriptions of the values for categorical variables. However, for any new variables that you 
generate, you will need to either create or modify variable names and labels. The most useful commands for 
doing so are listed below.  

To change the name of an existing variable:  
 

data <- rename(data,  "new_varname" = "old_varname") 
 

To add variable and value labels, you must define the labels, and then attach those labels to the variable:  
 

data <- mutate(data,  
varname = labelled(varname,  

labels=c("label" = #, "label" = #),  
label="Descriptive Variable Label")) 

 
For example, we can rename our newly generated variable, satdemocracy, and add the appropriate variable 
and value labels: 
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CES2019 <- rename(CES2019, satdem = satdemocracy) 

 
Next, we will add variable and value labels: 
 

CES2019 <- mutate(CES2019, satdem = labelled(satdem,  
          labels=c("Very Satisfied" = 1, "Fairly Satisfied" = 2,  
                   "Not Very Satisfied" = 3, "Not Satisfied at All" = 4),  
          label = "Satisfaction with Democracy")) 
 

To “activate” the labels (i.e., to have them show up when you make a table of the variable, you would have to 
turn it into a factor with the as_factor() function as follows: 

	
CES2019 <- mutate(CES2019, satdem = as_factor(satdem)) 

 

You should once again check your work by comparing the new variable against the original variable.  
 

with(CES2019, table(q6, satdem, useNA="ifany")) 

 
The exclusion of respondents who answered “don’t know” or “refused” in the new variable will change 
things. Repeat the steps outlined in Part IV to see how the removal of these response categories affects the 
frequency distribution and summary statistics.  
 

 
Check-In Point 
 
We covered a bit of ground in this section: you now know the reasons why you should never recode original 
variables (and thus will avoid future despair when discovering recoding errors). You know how to create new 
variables, and then recode, rename, and add variable and value labels to those new variables. These are likely 
to be some of the most frequently used procedures when working with data. 

 
Part VI: Creating Bar Graphs and Pie Charts 

 
Destination 
By the end of this section, you will be able to: 

• create bar graphs and pie charts.	
	
R offers a range of graphing options. There are several different graphing packages, including R’s base 
graphics, {lattice} and {ggplot2}.  While the numerous options available for graphing within R are 
beyond the scope of this handbook, we do outline the steps to create basic graphs and charts that you may use 
to display univariate frequency data. 
 
Let’s report the frequency distribution of our recoded satisfaction with democracy in a bar chart with the 
following syntax to produce the graph below (the graph is visible in the Plots tab of the lower-right tile): 

 
filter(CES2019, !is.na(satdem)) %>%  
ggplot(aes(x=satdem)) +  
  geom_bar() +  
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  labs(x = "", y="Count") +  
  ggtitle("Satisfaction with the way Democracy Works in Canada") 

 

 
 

The first line of the functions above filters out the missing data on the “satdem” variable.  The second line 
initializes a plot and sets the x variable to “satdem”.  The third line adds bars for the satdem variable.  The 
fourth line sets the x-axis label to blank and the y-axis label to “Count”.  The final line adds the title to the 
top of the figure.   
 
There is no pie chart function natively in {ggplot2}, so we will use the ggpie() function in the 
{DAMisc} package.  The ggpie() function returns a ggplot to which other elements can be added as below.   
 
ggpie(CES2019, "satdem", addPct="none") +  
  labs(fill="") +  
  ggtitle("Satisfaction with the way Democracy Works in Canada") 
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You will notice that these graphs include the title that you gave the functions above and the variable’s value 
labels. We can include additional information in the graph by adding additional instructions in the syntax. 
Let’s add the percentage of the sample within each category to the pie chart with the following syntax:  

 
ggpie(CES2019, "satdem", addPct="pie") +  
  labs(fill="") +  
  ggtitle("Satisfaction with the way Democracy Works in Canada") 

	
 

 
You could also add the percentages to the legend, in the event that some of the pie pieces are too small:  
 
 
ggpie(CES2019, "satdem", addPct="legend") +  
  labs(fill="") +  
  ggtitle("Satisfaction with the way Democracy Works in Canada") 
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Since the graph is a ggplot, you can modify it by adding other elements to it.  The document for the ggplot 
package should give you some ideas about other things you could do.   
 
 
Check-In Point 
 
Congratulations – you are now able to create basic univariate graphs. If you have an interest in more 
advanced graphing features, be sure to review the {ggplot2} documentation and other online resources.   

Part VII: Comparing Two Independent Samples  
 
Destination 
By the end of this section, you will be able to: 

• use a t-test to assess differences of means between two independent samples. 
 
In Chapter 13, we consider how we often wish to compare the means of two independent groups to see if 
they differ. To assess differences of means between two groups, we can use a t-test. To do this, we need a 
variable with our two groups of interest (for example, a treatment group and a control group from an 
experimental study) and an interval/ratio variable for which we expect a difference between the two groups. 
(Recall that means should only be used with interval/ratio variables.) 
 
For example, let’s compare the average income (interval/ratio variable) of men and women (dichotomous 
variable).8 We used the following syntax to find, examine, recode, and check the variables that we will use 
for this analysis:  
 

#Use the searchVarLabels() command to find the gender variable 
searchVarLabels(CES2019, "gender") 
 
#Look at the value labels and distribution of the original 
variable 
 
inspect(CES2019, "q3") 

 
8 Note that the CES asks about household income. We have used this as a proxy for personal income in this example.   
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*Generate, recode and label the new variable   
 
CES2019 <- mutate(CES2019, gender = car::recode(q3,  

"1=1; 2=2; else=NA")) 
 
CES2019 <- mutate(CES2019, gender = labelled(gender,  

labels=c("Male" = 1, "Female" = 2),  
               label = "Dichotomous gender variable")) 
 
CES2019 <- mutate(CES2019, gender = as_factor(gender)) 
 
 
#Check original and new variable distributions 
 
with(CES2019, table(q3, gender, useNA="ifany")) 
 
#Use the searchVarLabels() function  to find the income 
variable 
 
searchVarLabels(CES2019, "income") 
 
# Look at the value labels and distribution of the original 
variable 
 
inspect(CES2019, "q69") 
 
# Generate, recode and label the new variable (note that we 
have added "IR" to the end of the new variable name to indicate 
interval/ratio variable)   
 
CES2019 <- mutate(CES2019, incomeIR = car::recode(q69,  

"c(-9,-8) = NA")) 
attr(CES2019$incomeIR, "label") <-  

"Household income in dollars" 
 
 
# Check original and new variable distributions 
with(filter(CES2019, is.na(incomeIR)), table(q69)) 

 
The last command above is just finding the values that are missing in the “incomeIR” variable and then 
making a frequency distribution of the “q69” variable for those observations that are missing on “incomeIR”. 
 
R has a built-in t-test function called t.test().  However, it doesn’t give quite as much information as you 
like, so we’ll use the tTest() function in the {DAMisc} package as follows: 
 
 

tTest("gender", "incomeIR", CES2019) 
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Do the incomes of men and women differ? The results suggest that they do.  From the table above we see that 
the mean income for men is $112,299.40 compared to a mean income of $94,962.62 for women, a difference 
of $17,336.82 (the value reported as “Difference” in the Summary table). In other words, the results indicate 
that, on average, men earn $17,336.82 a year more than women. We provide a more detailed discussion of this 
test and the results reported here in the text (see Chapter 13). 
 
In Chapter 13, we also discuss statistical significance. You will recall that researchers use a one-tailed test 
when they hypothesize a specific direction to a relationship and use a two-tailed test when they do not 
hypothesize a direction. The R tTest() function by default reports the two-tailed hypothesis.  If you wanted 
a one-tailed test where you thought the difference was greater than zero, you could add an additional argument 
to the tTest() function, alternative="greater".  You could use alternative="less" for the 
other one-tailed hypothesis. Given that we did not make any assumptions about the direction of the relationship 
in advance, we would use the results from the default two-tailed test, a result that indicates a statistically 
significant relationship at p<0.001.  R reports the p-value as 2.44e-05.  This scientific notation means that the 
p-value is 2.44 with the decimal point moved five places to the left, so 0.0000244.     

 
Check-In Point 
If you are following along with the examples by running your own data, you should now be able to use a t-
test to assess differences of means between two independent samples. This is a useful skill, and we encourage 
you to practice by exploring other income differences between other dichotomous groups in the CES dataset. 
For example, do the average incomes of university and non-university graduates differ? 
 

Part VIII: Examining Bivariate Relationships for Nominal and/or Ordinal Variables 
 
Destination 
By the end of this section, you will be able to: 

• create crosstabulations; 
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• calculate measures of association; and  

• calculate Chi Square. 

 
In Chapter 12, we introduce you to the four questions we must answer when assessing whether there is a 
relationship between two variables: 

1. What is the form/direction of the relationship? 
2. How strong is the relationship? 
3. Is the relationship statistically significant? 
4. What happens to the relationship when we control for other variables? 

 
In this section, we will focus on how to use R to help answer the first three of these questions for nominal 
and/or ordinal variables. In the section that follows, we will look at interval/ratio variables. The final section 
of this handbook will consider the fourth and final question. 
 
To examine the relationship between two nominal and/or ordinal variables, we create a cross-tabulation 
(contingency table), calculate the appropriate measure of association, and calculate the appropriate inferential 
statistic. With R, we can do all of this with just a couple of functions. 
 
For example, let’s test the hypothesis that those with higher levels of income will also be more interested in 
politics. Before we can do so, we must recode our variables. For this example, we will recode our dependent 
variable (DV), political interest, into a three-point measure ranging from low to high (terciles), as follows9: 
 
 

# Use the searchVarLabels function to find the interest 
variable 
 
searchVarLabels(CES2019, "interest") 
 
#Look at the value labels and distribution of the original 
variable 
 
inspect(CES2019, "q9") 
 
# Generate, recode and label the new variable into terciles 
(note that the tercile divisions are based on the cumulative 
frequency)   
 
CES2019 <- mutate(CES2019,  

polinterest = car::recode(q9, "c(-9,-8) = NA"),  
     polinterest = binVar(polinterest, 3,  

method="proportions", labels=c("Low interest", 
"Middle interest", "High interest"))) 

 
# Check original and new variable distributions 

 
9	An alternative way to recode this variable would be to set respondents that choose 0-4 as low interest, 5 as the mid-point, and all 
responses over 5 as high interest.  We opt to use the cut-off points based on the cumulative frequency to produce three roughly 
equal sized groups.	
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with(CES2019, table(q9, polinterest, useNA="ifany")) 
 

 
In the code above, we first use the recode() function from the {car} package to change -9 and -8 to NA.  
Next, we use the binVar() function from the {DAMisc} package to cut our continuous variable into three 
roughly equally sized groups.  
 
We also will recode our independent variable (IV), income, into terciles (low, middle, and high income). It is 
important to note that many respondents (approximately 25% in the 2019 CES) did not report their actual 
income. To help reduce the number of non-responses, individuals who refuse or report that they do not know 
their actual income are asked a follow-up question that provides income categories for the respondent to 
choose instead of stating their actual income. In this example, we combine the responses from the two 
questions to generate a new income category variable. Note that we use the income variable that we 
generated for the ttest above in this example: 
 
# Use the lookfor command to find the interest variable 
 
searchVarLabels(CES2019, "income") 
 
#Look at the value labels and distribution of the original variable 
 
inspect(CES2019, "income") 
 
#Generate, recode and label the new variable into terciles (note that 
this combines the two income measures included in the CES) 
 
CES2019 <- mutate(CES2019, incomegrptemp = car::recode(incomeIR,  
                    "0=1; 1:30000=2; 30001:60000=3; 60001:90000=4;  
                    90001:110000=5; 110001:150000=6;  
                    150001:200000=7; 200000:hi=8; else=NA")) 
 
attr(CES2019$incomegrptemp, "label") <- "Temp income grp var" 
 
# Use the sumStats function to see what the range of income is  
# for each of the new categories you generated to confirm your recoding 
 
sumStats(CES2019, "incomeIR", byvar="incomegrptemp") 
 
# Merge two income group variables 
 
CES2019 <- mutate(CES2019,  
    igtmp = car::recode(q70, "c(-8,-9) = NA"),  
    incomegrpmerged = ifelse(is.na(incomegrptemp), igtmp, incomegrptemp),  
    incomegrpmerged = labelled(incomegrpmerged, labels =  
        attr(q70,"labels"))) 
 
 
names(attr(CES2019$incomegrpmerged, "labels"))[6] <- "(3) $30,001 to 
$60,000" 
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CES2019$incomegrpmerged <- as_factor(CES2019$incomegrpmerged) 
 
xt(CES2019, "incomegrpmerged") 
 
# Create new income tercile variable  
 
CES2019 <- mutate(CES2019, incometercile =    

binVar(as.numeric(incomegrpmerged), 3,  
        labels=c("Low income", "Middle income", "High income"))) 
 
#Check original and new variable distributions 
 
with(CES2019, table(incomegrpmerged, incometercile)) 
 
Note that we corrected an error in the value label by changing the names of the labels attribute for the 
variable.  Also note that we used a conditional statement ifelse() when we combined two variables to 
create incomegrpmerged. This if-else statement tells R to evaluate the expression in its first argument, here 
is.na(incomegrptemp) is true if “incomegrptemp” is missing and false otherwise.  The second 
argument tells R what to do if the expression is true.  In this case, it replaces “incomegrpmerged” with the 
“q70” variable, which we had recoded directly above to remove -8 and -9.  The third argument is what to do 
if the expression is false.  In this case, that’s using the “incomegrptemp” variable that we just defined.  Use 
the help function to learn more about the ifelse() function.  
 
With our variables prepared for analysis, we can now use the following syntax to test the relationship: 

 
xt(CES2019, "polinterest", byvar="incometercile", weight="weight_CES") 
 
Note that in creating crosstab tables, it is important to be clear on the order of your dependent and 
independent variables. We have followed the format DV in the rows and IV in the columns.  This makes 
sense because the xt() function only produces column percentages.  Unlike in Stata, we can use weights in 
producing cross-tab measures of fit and association.  The way that it works is a bit different, though.  The 
Chi-squared test that you will see is done properly through the {survey} package in R.  The other 
measures of fit are calculated on the weighted contingency tables where each count is rounded to the nearest 
integer value.  To recover the unweighted statistics, simply specify the xt() function without the weighting 
variable.  This produced the following results:10  

 

 
10	Note that these results differ slightly from those reported in Chapter 13. 	
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Is there a relationship between income and political interest? Recall from Chapter 12 that the first step when 
assessing the results from a contingency table with two ordinal level variables is to look for a consistent 
increase/decrease in the percentage of respondents across categories of the IV in the top row and the opposite 
pattern in the bottom row. In this example, reading across the top row (“Low interest”), we find that the 
percentages decrease as we move from left to right (low to high income): high income earners are 
approximately twelve percentage points less likely to indicate low political interest compared to their low 
income counterparts.  Looking at the bottom row (“High interest”) we find the reverse pattern, with high 
income earners approximately 9 percentage points more likely to indicate high political interest relative to 
those in the low income category.  
 
As noted in Chapter 12, our next step is to consider the correct correlation coefficient. Given that both 
variables are ordinal, we can assess the strength of the association by looking at the Gamma or the Tau value. 
Since gamma tends to inflate the strength of the relationship, we will opt for the more conservative Tau 
estimate. In this example, we find an extremely weak, positive (as income increases, political interest 
increases) relationship with a Tau value of 0.09.  
 
Finally, recall from Chapter 13 that we can assess whether or not the relationship is statistically significant by 
looking at the Pearson chi2 value. The results indicate that the relationship is statistically significant at 
p<0.001. As such, we would conclude that our results support our hypothesis: those with higher levels of 
income appear to be more interested in politics. 
 
 
 
 
Check-In Point 
 
This section covered an incredible amount of information – creating crosstabulations, how to calculate 
measures of association, and calculating Chi Square. This is powerful, but it is always critical to keep in mind 
that your decisions with respect to recoding have great influence on the results, so always check your 
recoding carefully before assessing relationships. 
 
 

Part IX: Examining Bivariate Relationships between Interval/Ratio Variables 
 
Destination 
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By the end of this section, you will be able to: 

• create scatterplots; 

• calculate Pearson’s Correlation Coefficient; and  

• conduct basic linear regression. 

 
To assess the relationship between two continuous (interval/ratio) variables, we continue to ask the same four 
questions noted in the last section (and, of course, in Chapter 12), but we use different statistical techniques.  
 
For example, we might theorize that younger individuals are more apt to like the Green party. To test this, we 
first recode the variables for analysis. To do this, you can use the following syntax: 
 

 
# Use the searchVarLabels() function to find the interest variable 
 
searchVarLabels(CES2019, "green") 
 
#Look at the value labels and distribution of the original variable 
 
inspect(CES2019, "q18") 
 
# Generate, recode and label the new variable  
 
CES2019 <- mutate(CES2019,  

          greenfeelings = car::recode(q18, "-9:-6 = NA")) 
 
attr(CES2019$greenfeelings, "label") <-  
     "Feelings about the Green Party" 
 
 
#Check original and new variable distributions 
 
with(filter(CES2019, is.na(greenfeelings)), table(q18)) 
 
# Use the searchVarLabels() function to find the interest variable 
 
searchVarLabels(CES2019, "age") 
 
# Look at the value labels and distribution of the original variable 
 
inspect(CES2019, "age") 
 
NOTE: The age variable does not require recoding. 
 

With our variables ready for analysis, we can produce a scatterplot to visually inspect whether or not there 
appears to be a linear relationship between age and feelings towards the Green party using the following 
syntax to produce the scatterplot shown below: 
 

ggplot(CES2019, aes(x=age, y=greenfeelings)) +  
  geom_point(alpha=.1) +  
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  theme_bw() +  
  labs(x="Age", y="Feelings about the Green Party") 
 

 
 

Now, we assess the scatter plot. What do you see? Don’t panic – we don’t see anything either. Based on the 
graph, it is difficult to interpret any type of relationship! It may be that age is not associated with feelings 
about the Green party. To be sure, we need to look to further, either using Pearson’s r or basic linear 
regression. 
 
Pearson’s r 
 
We can find the measure of association between the two variables, Pearson’s r. To estimate this value, we 
will use the command for a pairwise correlation, pwcorr, and we will add the command sig so that the output 
includes the level of statistical significance for the relationship. We will also apply the sample weight with 
this command. All together, our syntax is as follows: 

 
pwCorrMat(~age + greenfeelings, data=CES2019, weight=CES2019$weight_CES) 
 
Compare your results to our own.  
 

 
 

In the above code, we identify the variables to be correlated by specifying them on the right hand side of a 
formula separated by pluses. In interpreting the results, we will start with the correlation coefficient. In R, the 
output does not include the diagonal element, which is always 1.  The results indicate a weak, negative 
relationship between age and feelings about the Green party (-0.15): as age increases, feelings about the 
Green party decrease.   
 
We next turn to the inferential statistic to see if this weak, negative relationship is statistically significant. 
Correlations that are statistically significant at the specified level are flagged with a single asterisk.  The 
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default level is 0.05, but you can specify a different one with the level argument to the function.  For 
example, if you wanted to evaluate significance at the p=0.001 level, you would add the argument 
level=.001 to the function call above.  The value below the correlation coefficient is the probability of 
observing a relationship of this strength in the sample if a similar relationship did not exist in the population 
from which the sample was drawn. In this case, the relationship is found to be statistically significant at 
p<0.05.   
 
Basic linear regression 
 
While the measure of association and the strength of the relationship between two variables is informative, 
we can also use	information	about	the	independent	variable	to	predict	scores	on	the	dependent	
variable using basic linear regression.  R allows us to easily produce regression models with the use of the 
regress (reg) command.  
 
To continue with our example, we can estimate how feelings for the Green party changes for every year 
increase in age with the syntax below.  In the first line, we turn the “greenfeelings” variable into a numeric 
rather than labelled class.  It’s not necessary, but it does streamline the output a bit.  You would only have to 
do this once per R session, but it wouldn’t cause problems if by accident you happened to do it again.  In the 
second and third lines, we use the lm() function which estimates least squares regression.  In this case, we 
use the weighting variable, too. The first argument to the function is a formula where the dependent variable 
is on the left-hand side of the tilde (~) and the independent variables separated by pluses (in this case).   

 
CES2019$greenfeelings <- as.numeric(CES2019$greenfeelings) 
green.mod <- lm(greenfeelings ~ age, data=CES2019,  

weight=weight_CES) 
summary(green.mod) 
 

 
 
Be sure to check your results against ours. 
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There is considerably more information presented here than in the Pearson’s r results. Let’s walk through 
some of it: 

• Age coefficient. The age coefficient is -0.24. This indicates that for every year increase in age, 
feelings about the Green party decrease by 0.24 points. We also find that there is a statistically 
significant relationship between age and feelings about the Green party based on the value 
reported under the P(> |t|) column (0.000). We would report this a p<0.001 in our written 
interpretation of the results.  

• Intercept: The constant (intercept), 55.20, is the value on the feelings about the Green party 
variable when age is equal to 0 (an impossible value given that respondents for the CES are a 
minimum of 18 years of age).  

• r2: How much of the variance in the dependent variable does our independent variable 
explain? Not much. Recall from Chapter 12 that we can determine the proportion of the 
dependent variable that can be explained by the independent variable by squaring the 
Pearson’s r value, producing a result known as r2. This value is reported with the R output as 
“Multiple R-squared”, 0.02 in this example. In other words, using age as a predictor of 
feelings about the Green party reduces our prediction errors by two percent.		 

 
Check-In Point 
 
If you are continuing to follow along by running all of the examples in your own dataset, you now have the 
ability to create a scatter plot, calculate Pearson’s r, and conduct basic linear regression with R. You have 
come a long way! 
 

Part X: Assessing Relationships Using Control Variables 
 
Destination 
By the end of this section, you will be able to: 

• add control variables to your analyses. 

 

The final question in assessing a relationship between two variables is to consider what happens to the 

relationship once other important variables are controlled. We discuss this question fully in Chapter 13, and 

in this section of the handbook we direct you to the appropriate R syntax. 

 
Cross tabs and control variables 
 
Recall from Chapter 13 that to test a control variable using a crosstabulation, you assess the IV -DV relationship 
separately for each category of the control and compare these results against those obtained in the original 
(full) model.  
 
Let’s consider the relationship between income and political interest (recall that we recoded these variables 
previously), controlling for education (university graduate versus non-university graduate). We can use the 
xt() function with the controlvar argument command, which instructs R to generate contingency tables 
and measures of fit separately for each sub-group (category) of the variable indicated. To test the income-
political interest relationship while controlling for education, we instruct R to create crosstabulations for all 
categories of education. Try it by first generating the dichotomous education variable and then using the xt() 
function as follows:  
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# Use the searchVarLabels function to find the interest variable 
 
searchVarLabels(CES2019, "education") 
 
# Look at the value labels and distribution of the original 
variable 
 
inspect(CES2019, "q61") 
 
# Generate, recode and label the new variable  
 
CES2019 <- mutate(CES2019, universitygrad = car::recode(q61, 
  "1:8='Non-university grad'; 9:11='University grad'; else=NA",  
  as.factor=TRUE,  
  levels=c("Non-university grad", "University grad"))) 
 
attr(CES2019$universitygrad, "label") <-  
  "University graduate versus non-university graduate" 
 
# Check original and new variable distributions 
 
with(CES2019, table(q61, universitygrad, useNA="ifany")) 
 
# Generate crosstab with control variable 
xt(CES2019, "polinterest", byvar="incometercile",     
     weight="weight_CES", controlvar="universitygrad") 

 
This will produce the following results for non-graduates and university graduates, respectively: 
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The interpretation of the relationship with the inclusion of a control variable is the same as the process you 
followed to interpret the original relationship, only you need to do so for each category of the control 
variable. You then compare the results from each of the control variable categories to that of the original 
relationship to assess whether or not the control variable affects the relationship as anticipated (see Chapter 
13 for a full interpretation of the results with the addition of the control variable). Recall that we originally 
observed an extremely weak, statistically significant relationship (Tau = 0.09; p<0.001) in the original model, 
with levels of political interest increasing with income. When we control for education, we find that the 
relationship is essentially replicated for non-university graduates.  The same basic relationship holds for 
university graduates, too though it is a bit weaker (Tau = .06, p=.001).  Accordingly, education does not 
appear to be a source of spuriousness.  
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Multivariate linear regression  
 

The syntax for multivariate linear regression in R is the same as that for basic linear regression, only we add 
the additional independent and/or control variables to the model. For example, in addition to age, we can 
assess how education and income influence feelings about the Green party with the following syntax:  

 
green.mod2 <- lm(greenfeelings ~ age + universitygrad + incomeIR,   
     data=CES2019, weight=weight_CES) 
summary(green.mod2) 
 

 
 

The results show that, holding education and income equal, for every year increase in age, feelings 
about the Green party decrease by 0.26 points (p<0.001). In the case of education, given that we are 
using a dichotomous variable, we would interpret the results as indicating that university graduates 
are more likely (10 points) to have more positive feelings about the Green party than those who have 
not completed university, net of age and income.  While the coefficient for income is statistically 
significant, the impact on feelings about the Greens is marginal, a decrease of 0.00002 points for 
every unit increase in income, holding age and education constant. How much of the variance in the 
dependent variable does our model explain? We can use the value reported as the adjusted R-squared, 
which takes into account the number of variables in the model, to determine the proportion of the 
dependent variable that can be explained by the independent variables. In this example, our model 
reduces our prediction errors by 6 percent.  
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Check-In Point and Conclusion 

 
As we come to the end of this introductory R handbook, we hope that the procedures outlined here 
have provided you with the basic skills necessary to conduct your own statistical analyses. We also 
hope that this introduction has encouraged you to learn more about the many possibilities to use this 
type of statistical program for your research. As we have noted, this is only a very small sampling of 
the many options available in R, which we hope serves as the starting point for your continued 
exploration of the possibilities that this software has to offer.   


