A pair of simultaneous equations of the form

$$
a_{1} x+b_{1} y=0 \text { and } a_{2} x+b_{2} y=0
$$

has non-trivial solutions ($x=y=0$ is a trivial solution) only if the determinant of the coefficients, D, is equal to zero, where

$$
D=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{1} b_{2}-b_{1} a_{2}
$$

2×2 Determinant
The rule can be extended to three or more simultaneous equations of a similar form (such as $a_{1} x+b_{1} y+c_{1} z=0$, etc). Thus, a 3×3 determinant is evaluated by expanding it as a sum of 2×2 determinants:
$D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=a_{1}\left|\begin{array}{lll}b_{2} c_{3}-c_{2} b_{3} & c_{3} \\ b_{2} \\ b_{3} & c_{3}\end{array}\right|-b_{1}\left|\begin{array}{lll}a_{2} & c_{2}-c_{3} a_{3} & a_{3} \\ a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|+c_{1}\left|\begin{array}{cc}a_{2} b_{3}-b_{2} a_{3} & a_{3} \\ a_{3} & b_{3}\end{array}\right| \quad 3 \times 3$ Determinant and there are non-trivial solutions only if $D=0$. Note the sign change in alternate columns (b_{1} occurs with a negative sign in the expansion).

An important property of a determinant is that if any two rows or any two columns are interchanged, then the determinant changes sign:

Exchange columns: $\left|\begin{array}{ll}b & a \\ d & c\end{array}\right|=b c-a d=-(a d-b c)=-\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
Exchange rows: $\left|\begin{array}{ll}c & d \\ a & b\end{array}\right|=c b-d a=-(a d-b c)=-\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
An implication is that if any two columns or rows are identical, then the determinant is zero.

If the simultaneous equations are of the form

$$
a_{1} x+b_{1} y=k_{1} \text { and } a_{2} x+b_{2} y=k_{2}
$$

with k_{1} and k_{2} nonzero, use Cramer's rule, that $x=D_{x} / D$ and $y=D_{y} / D$, where

$$
D_{x}=\left|\begin{array}{ll}
k_{1} & b_{1} \\
k_{2} & b_{2}
\end{array}\right|, \quad D_{y}=\left|\begin{array}{ll}
a_{1} & k_{1} \\
a_{2} & k_{2}
\end{array}\right|
$$

with analogous expressions for equations in more unknowns. Note that for simultaneous equations of this form, there are nontrivial solutions only if $D \neq 0$.

