Let W be the solvent (such as water) and S the solute. The molar concentration (informally: 'molarity'), c_{S} or [S], is the amount of solute molecules (in moles) divided by the volume, V, of the solution:

Molar concentration: $c_{\mathrm{S}}=\frac{n_{\mathrm{S}}}{V}$ or $[\mathrm{S}]=\frac{n_{\mathrm{S}}}{V}$
It is commonly reported in moles per cubic decimetre $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ or, equivalently, in moles per litre ($\mathrm{mol} \mathrm{L}^{-1}$). It is convenient to define its 'standard' value as $c^{\ominus}=1 \mathrm{moldm}{ }^{-3}$.

The molality, b_{s}, of a solute is the amount of solute species (in moles) in a solution divided by the total mass of the solvent (in kilograms), m_{w} :

Molality: $\quad b_{\mathrm{S}}=\frac{n_{\mathrm{S}}}{m_{\mathrm{W}}}$
Both the molality and mole fraction are independent of temperature; in contrast, the molar concentration is not. It is convenient to define the 'standard' value of the molality as $b^{\ominus}=1 \mathrm{molkg}^{-1}$.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount n of molecules. If the mole fraction of the solute is x_{s}, the amount of solute molecules is $n_{\mathrm{s}}=x_{\mathrm{S}} n$. The mole fraction of solvent molecules is $x_{\mathrm{w}}=1-x_{\mathrm{s}}$, and so the amount of solvent molecules is $n_{\mathrm{W}}=x_{\mathrm{W}} n=\left(1-x_{\mathrm{s}}\right)$ n. The mass of solvent, of molar mass M_{W}, present is $m_{\mathrm{w}}=n_{\mathrm{W}} M_{\mathrm{W}}=\left(1-x_{\mathrm{s}}\right) n M_{\mathrm{w}}$. The molality of the solute is therefore

$$
b_{\mathrm{S}}=\frac{n_{\mathrm{S}}}{m_{\mathrm{w}}}=\frac{x_{\mathrm{S}} n}{\left(1-x_{\mathrm{s}}\right) n M_{\mathrm{w}}}=\frac{x_{\mathrm{S}}}{\left(1-x_{\mathrm{s}}\right) M_{\mathrm{w}}}
$$

The inverse of this relation, the mole fraction in terms of the molality, is

$$
x_{\mathrm{s}}=\frac{b_{\mathrm{S}} M_{\mathrm{W}}}{1+b_{\mathrm{S}} M_{\mathrm{W}}}
$$

2. The relation between molality and molar concentration

The total mass of a volume V of solution (not solvent) of mass density ρ is $m=\rho V$. The amount of solute molecules in this volume is $n_{\mathrm{s}}=c_{\mathrm{S}} V$. The mass of solute present is $m_{\mathrm{S}}=$ $n_{\mathrm{S}} M_{\mathrm{S}}=c_{\mathrm{S}} V M_{\mathrm{S}}$. The mass of solvent present is therefore $m_{\mathrm{W}}=$ $m-m_{\mathrm{S}}=\rho V-c_{\mathrm{S}} V M_{\mathrm{S}}=\left(\rho-c_{\mathrm{S}} M_{\mathrm{S}}\right) V$. The molality is therefore

$$
b_{\mathrm{s}}=\frac{n_{\mathrm{S}}}{m_{\mathrm{w}}}=\frac{c_{\mathrm{S}} V}{\left(\rho-c_{\mathrm{s}} M_{\mathrm{s}}\right) V}=\frac{c_{\mathrm{S}}}{\rho-c_{\mathrm{s}} M_{\mathrm{s}}}
$$

The inverse of this relation, the molar concentration in terms of the molality, is

$$
c_{\mathrm{S}}=\frac{b_{\mathrm{s}} \rho}{1+b_{\mathrm{s}} M_{\mathrm{s}}}
$$

3. The relation between molar concentration and mole fraction

By inserting the expression for b_{S} in terms of x_{S} into the expression for c_{S}, the molar concentration of S in terms of its mole fraction is

$$
c_{\mathrm{S}}=\frac{x_{\mathrm{s}} \rho}{x_{\mathrm{w}} M_{\mathrm{W}}+x_{\mathrm{s}} M_{\mathrm{s}}}
$$

with $x_{\mathrm{w}}=1-x_{\mathrm{s}}$. For a dilute solution in the sense that $x_{\mathrm{S}} M_{\mathrm{S}} \ll x_{\mathrm{W}} M_{\mathrm{w}}$,

$$
c_{\mathrm{s}} \approx\left(\frac{\rho}{x_{\mathrm{w}} M_{\mathrm{W}}}\right) x_{\mathrm{s}}
$$

If, moreover, $x_{\mathrm{s}} \ll 1$, so $x_{\mathrm{w}} \approx 1$, then

$$
c_{\mathrm{s}} \approx\left(\frac{\rho}{M_{\mathrm{w}}}\right) x_{\mathrm{s}}
$$

