The chemist's toolkit 6 Measures of concentration

Let W be the solvent (such as water) and S the solute. The **molar concentration** (informally: 'molarity'), c_s or [S], is the amount of solute molecules (in moles) divided by the volume, *V*, of the solution:

Molar concentration:
$$c_{\rm S} = \frac{n_{\rm S}}{V}$$
 or $[{\rm S}] = \frac{n_{\rm S}}{V}$

It is commonly reported in moles per cubic decimetre (mol dm⁻³) or, equivalently, in moles per litre (mol L⁻¹). It is convenient to define its 'standard' value as $c^{\circ} = 1 \mod \text{dm}^{-3}$.

The **molality**, b_s , of a solute is the amount of solute species (in moles) in a solution divided by the total mass of the solvent (in kilograms), m_w :

Molality:
$$b_{\rm S} = \frac{n_{\rm S}}{m_{\rm W}}$$

Both the molality and mole fraction are independent of temperature; in contrast, the molar concentration is not. It is convenient to define the 'standard' value of the molality as $b^{\circ} = 1 \text{ mol kg}^{-1}$.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount *n* of molecules. If the mole fraction of the solute is x_s , the amount of solute molecules is $n_s = x_s n$. The mole fraction of solvent molecules is $x_w = 1 - x_s$, and so the amount of solvent molecules is $n_w = x_w n = (1 - x_s)$ *n*. The mass of solvent, of molar mass M_w , present is $m_w = n_w M_w = (1 - x_s) n M_w$. The molality of the solute is therefore

$$b_{\rm s} = \frac{n_{\rm s}}{m_{\rm w}} = \frac{x_{\rm s}n}{(1-x_{\rm s})nM_{\rm w}} = \frac{x_{\rm s}}{(1-x_{\rm s})M_{\rm w}}$$

The inverse of this relation, the mole fraction in terms of the molality, is

$$x_{\rm s} = \frac{b_{\rm s} M_{\rm W}}{1 + b_{\rm s} M_{\rm W}}$$

۲

2. The relation between molality and molar concentration

The total mass of a volume *V* of *solution* (not solvent) of mass density ρ is $m = \rho V$. The amount of solute molecules in this volume is $n_s = c_s V$. The mass of solute present is $m_s = n_s M_s = c_s V M_s$. The mass of solvent present is therefore $m_w = m - m_s = \rho V - c_s V M_s = (\rho - c_s M_s) V$. The molality is therefore

$$b_{\rm s} = \frac{n_{\rm s}}{m_{\rm W}} = \frac{c_{\rm s}V}{(\rho - c_{\rm s}M_{\rm s})V} = \frac{c_{\rm s}}{\rho - c_{\rm s}M_{\rm s}}$$

The inverse of this relation, the molar concentration in terms of the molality, is

$$c_{\rm S} = \frac{b_{\rm S}\rho}{1 + b_{\rm S}M_{\rm S}}$$

3. The relation between molar concentration and mole fraction

By inserting the expression for b_s in terms of x_s into the expression for c_s , the molar concentration of S in terms of its mole fraction is

$$c_{\rm S} = \frac{x_{\rm S}\rho}{x_{\rm W}M_{\rm W} + x_{\rm S}M_{\rm S}}$$

with $x_W = 1 - x_S$. For a dilute solution in the sense that $x_S M_S \ll x_W M_W$

$$c_{\rm S} \approx \left(\frac{\rho}{x_{\rm W}M_{\rm W}}\right) x_{\rm S}$$

If, moreover, $x_s \ll 1$, so $x_w \approx 1$, then

$$c_{\rm s} \approx \left(\frac{\rho}{M_{\rm w}}\right) x_{\rm s}$$