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2.1. The space group of an ideal fcc-{211} surface is p1m. List all possible space groups that it
could display after either reconstruction or adsorption. Which additional space groups would be
possible for the {110} surface of the same material?

Upon reconstruction, or adsorption of an overlayer, the symmetry of a surface may be lowered to any of its
sub-groups, as summarised by Fig. 2.4 in Section 2.3, so to answer the first part of this question we must
simply identify the sub-groups of the p1m space group.

Consulting Fig. 2.4, we see that space groups c1m and p1m are mutual sub-groups of each other. This
means that a surface conforming to the c1m sub-group could change its symmetry to p1m by reconstruction
or adsorption, and equally a surface conforming to the p1m sub-group could change its symmetry to c1m.
The latter is, therefore, one possible outcome for the {211} surface.

In addition, the p1g space group is a direct sub-group of p1m, and the p1 sub-group is in turn a sub-group
of p1g. In all, therefore, the result of adsorption or reconstruction on the {211} surface of an fcc crystal
must conform to one out of the p1m, c1m, p1g or p1 space groups. Note that we are able to reach these
conclusions without having to sketch the {211} surface at all, let alone having to think about possible
adsorption sites or atomic displacements.

Moving on, the question does not provide us with the space group for the ideal {110} surface of an fcc
crystal, but this is stated to be p2mm in Fig. 2.5 (Section 2.4). Even if this hint were not present, however,
we could come to this conclusion by examination of the structure shown in this figure, as follows. It is
clear, in the first place, that the surface does not possess 6-fold, 4-fold or 3-fold rotational symmetry, but it
does possess 2-fold rotational symmetry. This immediately restricts the possible space groups of the ideal
surface to c2mm, p2mm, p2mg, p2gg or p2. The latter three may then be ruled out on the basis that the
surface possesses two distinct mirror symmetries (parallel and perpendicular to the close-packed rows of its
structure). Finally, the two-dimensional lattice of the surface is rectangular in nature, which rules out the
c2mm space group (with its implied rhombic lattice) leaving us to conclude that the ideal {110} surface
does indeed conform to p2mm symmetry.

The sub-groups of the p2mm space group include its mutual sub-group, c2mm, so this is certainly one
possible result of adsorption or reconstruction. The only other direct sub-group is p2mg, but this in turn
counts p1m and c1m as direct sub-groups, and hence all of the previously listed space groups obtainable
on the {211} surface would also be obtainable on the {110} surface.

Furthermore, however, the p2mg space group also has another direct sub-group, namely the p2gg space
group, from which one may descend either to the p1g space group (already counted amongst those accessible
via the p1m or c1m sub-groups) or to the p2 sub-group (which also permits access to the already-counted
p1 sub-group). In all, therefore, the possible results of adsorption or reconstruction upon the ideal {110}
surface of an fcc crystal include, alongside all of those space groups listed previously for the ideal {211}
surface, the space groups denoted p2mm, c2mm, p2mg, p2gg and p2.
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2.2. For all of the surfaces depicted in Fig. 2.5, work out the coordination number of atoms in
each of the top four layers. Given that the primitive unit cell areas for {111}, {100}, {110},
{311}, {210}, and {531} surfaces are in the ratio 3: 2

√
3: 2
√

6:
√

33: 2
√

15:
√

105, estimate the
order of stability amongst these surfaces.

First let us note that these are surfaces of materials that take the face-centred cubic crystal structure, so
the coordination number of atoms in the bulk is 12. We can most easily work out the coordination numbers
of atoms near the surface by working out how many nearest neighbours each atom has in the layers above
and below.

Starting with the {111} surface, we can see by inspection that each atom within a given layer has 6 nearest
neighbours within its own layer, 3 nearest neighbours within the layer below, and would (in bulk) have a
further 3 nearest neighbours in the layer above. For atoms in the uppermost layer, these latter 3 neighbours
are missing, giving a coordination number of 9. For the atoms in every layer lower than this (including the
second, third and fourth layers) all nearest neighbours are present, so the coordination number is 12.

Turning to the {100} surface, we can see (again by inspection) that each atom within a given layer has just
4 nearest neighbours within its own layer, 4 nearest neighbours within the layer below, and would (in bulk)
have a further 4 nearest neighbours in the layer above. For atoms in the top layer, these latter 4 neighbours
are missing, giving a coordination number of 8. For the atoms in every layer lower than this (including the
second, third and fourth layers) all nearest neighbours are present, so the coordination number is 12.

Things get a little trickier to visualise for the {110} surface, where each atom within a given layer clearly
has only 2 nearest neighbours within its own layer. Careful inspection of the structure allows us to note
4 nearest neighbours for this atom in the layer below, and 1 nearest neighbour in the layer below that.
Similarly, in bulk there would be 4 nearest neighbours in the layer above, and 1 nearest neighbour in the
layer beyond. A quick summation confirms that this makes 12 in all. Based on this, we can see that an
atom in the uppermost layer lacks 5 nearest neighbours (from the two layers that would have been present
above it in the bulk) and hence has a coordination number of 7. An atom in the second layer, on the other
hand, lacks only 1 nearest neighbour (from the next layer above but one) and hence has a coordination
number of 11. An atom in the third layer lacks no nearest neighbours, and so has a coordination number
of 12, and this is also true for the fourth and deeper layers.

For the {311} surface, we again see that that each atom within a given layer possesses 2 nearest neigh-
bours within its own layer. We can now, however, count for this atom only 3 nearest neighbours in the
layer immediately below, but there are 2 further nearest neighbours in the layer below that. Similarly,
each atom (in the bulk) would have 3 nearest neighbours in the layer above, and 2 nearest neighbours
in the next layer above but one. Again, these numbers correctly sum to a coordination number of 12 for
the bulk material. In the uppermost layer, however, each atom lacks 5 nearest neighbours (from the two
layers that would have been present above it in the bulk) and hence has a coordination number of 7. An
atom in the second layer, on the other hand, lacks only 2 nearest-neighbour atoms (from the next layer
above but one) and hence has a coordination number of 10. An atom in the third layer lacks no near-
est neighbours, and so has a coordination number of 12, and this is also true for the fourth and deeper layers.

Matters are trickier still for the {210} surface, but the same systematic approach works nevertheless. Each
atom within a given layer now has no nearest neighbours at all within its own layer, but has 3 in the
layer immediately below, 2 in the layer below that, and 1 in the next layer down but two. Similarly, in
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the bulk it would have 3 nearest neighbours in the layer immediately above, 2 in the layer above that,
and 1 in the next layer above but two. Consequently, in the uppermost layer, we see that each atom
lacks 6 nearest neighbours (from the three layers that would have been present above it in the bulk) and
hence has a coordination number of 6. In the second layer, each atom has 3 nearest neighbours more than
this, due to the layer immediately above, and hence has a coordination number of 9. In the third layer,
meanwhile, each atom has a further 2 nearest neighbours, due to the next layer above but one, giving a co-
ordination number of 11. Atoms in the fourth layer and below have the full bulk coordination number of 12.

Finally, for the {531} surface, each atom within a given layer again has no nearest neighbour at all within
its own layer, but it does have 2 nearest neighbours in the layer immediately below, 2 nearest neighbours in
the layer below that, 1 nearest neighbour in the next layer down but two, and a further 1 nearest neighbour
in the next layer down but three. As one might expect, this pattern is mirrored for the four layers above.
This means that each atom in the uppermost layer lacks 6 nearest neighbours (from the four layers that
would have been present above it in the bulk) and hence has a coordination number of 6. Each atom in the
second layer has 2 additional nearest neighbours, due to the layer immediately above, giving a coordination
number of 8, while each atom in the third layer has another 2 nearest neighbours, from the next layer
above but one, giving a coordination number of 10. In the fourth layer, each atom lacks only 1 nearest
neighbour and thus has a coordination number of 11. From the fifth layer down, all atoms have the bulk
coordination number of 12.

Collating these results (Table I) we can see immediately that the total number of missing nearest neigh-
bours per primitive surface unit cell (B0) increases for each surface in the series (recall that there will be
one atom per layer within such a cell, and that the number of missing nearest neighbours for each atom is
simply the difference between its coordination number and the bulk coordination number of 12).

Surface C1 C2 C3 C4 B0 A0 B0/A0

{111} 9 12 12 12 3 3 1 = 1.000

{100} 8 12 12 12 4 2
√

3 2
√

3/3 = 1.155

{110} 7 11 12 12 6 2
√

6
√

6/2 = 1.225

{311} 7 10 12 12 7
√

33 7
√

33/33 = 1.219

{210} 6 9 11 12 10 2
√

15
√

15/3 = 1.291

{531} 6 8 10 11 13
√

105 13
√

105/105 = 1.269

Table 1: Coordination numbers (Cn) for atoms in layer n of various fcc surfaces. Also listed are primitive
surface unit cell areas, A0, normalised to an area of 3 for the {111} surface, and the total number of
missing nearest neighbours, B0, summed over the primitive surface unit cell.
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In order to estimate surface stability, we can reasonably assume that the specific surface energy will be
approximately proportional to B0/A0, where A0 is the area of the primitive surface unit cell. Choosing our
(arbitrary) units such that A0 = 3 for the {111} cell simplifies matters, since the area ratios given in the
question can then be used directly to obtain A0 for the other cells with minimal effort. It also happens to
give B0/A0 = 1 for the {111} surface, so that our estimated specific surface energies are expressly in units
relative to that of the {111} surface.

Notably, the two flat surfaces, {111} and {100}, have the lowest estimated specific surface energies (1.000
and 1.155), while the two stepped surfaces, {110} and {311}, have higher estimated specific surface en-
ergies (1.225 and 1.219) but are very similar to one another. The highest specific surface energies of all
are estimated for the kinked {210} and {531} surfaces (1.291 and 1.269) although here the difference
between the two is a little greater. All of these estimates, it should be stressed, fail to take into account
(i) the role of interactions beyond nearest-neighbour level; (ii) the possibility that even nearest-neighbour
interactions may vary with the local environment; and (iii) the stabilising effect of surface relaxations,
which may be of greater importance for less symmetric and more structurally sparse surfaces than for
relatively more symmetric and close-packed ones. Nevertheless, the predicted increase in specific sur-
face energy from flat surfaces (no step edges) to stepped surfaces (straight step edges) to kinked surfaces
(step edges with kinks) is typically borne out not only by more sophisticated models but also by experiment.

A further point to note, in passing, relates to the stability of surfaces against disorder. On a kinked
surface, the coordination number in the uppermost layer is precisely half that of the underlying bulk
(whether the bulk material be face-centred cubic, as here, or any other crystal structure). This means
that removal of an atom from the ideal surface, thus creating a vacancy, involves breaking precisely the
same number of nearest-neighbour interactions as would be re-made in placing that atom elsewhere on
the ideal surface, thus creating an adatom. Accordingly, the creation of an adatom–vacancy pair would
be essentially thermoneutral, if one were to ignore relaxation and longer-range interactions, and entropy
would therefore favour the random creation of many such pairs. At any reasonable temperature, therefore,
we expect kinked surfaces to be highly disordered. For stepped and flat surfaces, where the coordination
number in the uppermost layer always exceeds that of any kinked surface, there is a distinct enthalpy cost
to the creation of adatom–vacancy pairs, so disorder of this type occurs only at elevated temperatures
(higher for flat surfaces than for stepped ones).



5

2.3. For each of the reconstructions depicted in Fig. 2.7, indicate the translational periodicity by
means of both Wood’s notation and matrix notation.

For the reconstruction of fcc-{100} shown in panel (a) of the figure, we have some flexibility in our labelling
of the ideal primitive lattice vectors whilst satisfying the conditions of Eqn. 2.6 from Section 2.5. With the
choice shown in Fig. 1.a, the unit cell of the reconstruction has one side that is identical to the a1 vector,
and another that is five times longer than (and in the same direction as) the a2 vector. Wood’s notation for
this would then simply be (1×5) or p(1×5). A different valid choice of primitive lattice vectors, however,
would give us (5×1) or p(5×1) instead. Retaining our original choice would give us a matrix notation of
(1, 0; 0, 5), while the alternate choice would imply (5, 0; 0, 1).

a.

b.

c.

a1

a2

a2

a1

a1

a2

Figure 1: Labelling of ideal primitive lattice vectors for the reconstructions shown in Fig. 2.7.

Panel (b) shows a possible reconstruction of the fcc-{110} surface, and we have less flexibility in our choice
of ideal primitive lattice vectors if we are to satisfy the conditions from Eqn. 2.6. Using the choice shown
in Fig. 1.b, we see that the unit cell of the reconstruction has one side that is identical to the a1 vector,
and another that is twice the length of (and in the same direction as) the a2 vector. Wood’s notation for
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this would then simply be (1×2) or p(1×2), and no alternative choice for a1 and a2 satisyfing Eqn. 2.6
would yield anything different. In matrix notation, we would have (1, 0; 0, 2).

For panel (c) we return to the fcc-{100} surface, and again make the same choice as for panel (a) above
(see Fig. 1.c). In this case, the unit cell of the reconstruction has one side that is twice the length of (and in
the same direction as) the a1 vector, and another that is twice the length of (and in the same direction as)
the a2 vector. Wood’s notation for this situation is then simply (2×2) or p(2×2), and the corresponding
matrix notation is (2, 0; 0, 2). Note that although the adatoms are arranged in a c(2×2) pattern, this
would not be a correct designation for the overall superstructure, due to the incompatible displacements
of the substrate atoms.
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2.4. Potassium is adsorbed on a Ni{110} surface, forming an overlayer with c(2×2) periodicity.
Assuming that no multilayer forms, suggest the most likely value of the coverage in ML units,
and hence estimate the surface area per alkali metal adatom (taking the nickel lattice parameter
to be 3.52 Å in its fcc crystal structure; the metallic and ionic radii of potassium may be taken
as 2.20 Å and 1.52 Å respectively).

Here it will be useful to have at least an approximate idea of the surface unit cell dimensions. Let us start by
converting the given lattice parameter of bulk nickel into a value for the metallic diameter of a nickel atom.
In the fcc crystal structure, a diagonal drawn across one face of the conventional unit cell is equivalent to
two metallic diameters, assuming the atoms to be close-packed spheres. With a cube side-length of 3.52 Å,
this means that the metallic diameter of nickel must be 2.49 Å (multiplying by

√
2 to get the diagonal

length, and dividing by 2 to get the diameter). Sketching the surface structure (Fig. 2, lower left in each
panel) we see that the (1×1) cell of the {110} surface will have one side of length 2.49 Å, and another of
3.52 Å (i.e. a factor of

√
2 larger). The area of this cell will therefore be 8.76 Å2.

a2

a1

a2

a1

a.

b.

Figure 2: Models for a c(2×2) potassium overlayer on Ni{110}, assuming (a) one adatom per primitive unit cell,
and (b) two adatoms per primitive unit cell. The clean surface is shown for reference in the lower left in each case,
with its primitive unit cell marked.

Now, for a c(2×2) reconstruction one can construct a cell with doubled dimensions along both the a1 and
a2 directions, and hence an area of 35.04 Å2, but this will not be primitive. The prefix “c” implies that
its central point is equivalent to its corners. A primitive cell would be lozenge-shaped, having an area just
twice that of the (1×1) cell, which is to say 17.52 Å2. Cells of both types are shown in Fig. 2.a. Also shown
in that figure is one possible model for the overlayer, with precisely one potassium adatom per primitive
unit cell. This would correspond to the lowest conceivable coverage consistent with the observed c(2×2)
reconstruction. Note that the model shown assumes that the adatoms lie in atop sites, but one could easily
slide the overlayer sideways to involve other sites instead. We cannot distinguish between sites on the basis
of the information given in the question.
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For the model shown, the spacing between the centres of two nearest-neighbour adatoms would be equal
in length to the diagonal of the (1×1) cell, which can be determined (as the hypotenuse of a right-angled
triangle) to be 4.31 Å. If the adatoms are thought of as non-overlapping spheres, this would give a maxi-
mum possible diameter for potassium that is not at all dissimilar to twice the metallic radius of the element
given in the question (2×2.20 = 4.40 Å) and would be consistent with the formation of a very slightly
expanded metallic overlayer. Note that the maximum possible packing fraction (i.e. fraction of the cell
area actually covered by the circular cross-section of its contained adatom) is just π(4.31/2)2/17.52 = 0.83.

It is rather harder to visualise what an overlayer model containing two adatoms per primitive cell might
look like, but an example is shown in Fig. 2.b. Clearly the overlayer atoms must be only slightly larger
than the underlying nickel atoms if they are to be described as non-overlapping spheres. A little geometry
(left as an exercise to the reader) will confirm that this particular model requires potassium atoms to be
no more than about 8% greater in diameter than the nickel atoms, and that the packing fraction will
be about 0.65. In this case, the circular cross-section of each adatom would have to be no larger than
17.52 × 0.65/2 = 5.69 Å2, and the corresponding radius no larger than

√
(5.69/π) = 1.35 Å. This is

substantially less than even the ionic radius given in the question (let alone the metallic radius) suggesting
that the model coverage is far too high. Note, however, that our conclusion is not really based upon the
specific details of our proposed model. We could shift the adatom around within the unit cell, to create
any number of alternative models, but it is hard to imagine that any would have higher packing fractions
than about 0.65, and so our logic would still hold. We therefore rule out all models containing two (or
more) adatoms per primitive unit cell.

As a side note, we might mention the discussion of alkali-metal adsorption from Section 3.4, whereby ionic
binding dominates at low coverage, giving way to more metallic bonding at high coverage. The results here
are consistent with the notion that maximum packing within a single surface layer seems to be dictated by
the metallic radius of potassium, rather than by its (smaller) ionic radius.

Finally, to return to the question, we are at last able to answer that the maximum coverage is 0.5 ML (i.e.
one adatom per primitive c(2×2) cell, and hence half an adatom per (1×1) cell). The surface area per
adatom is thus equal to the area of the primitive c(2×2) cell, or 17.52 Å2.
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2.5. The (135) surface of a face-centred cubic material possesses a two-dimensional real-space
lattice that may be generated from the primitive real-space lattice vectors

a1 = x̂− 2ŷ + ẑ

a2 = 2x̂ + ŷ − ẑ

where x̂, ŷ and ẑ are unit vectors aligned with the sides of the conventional bulk unit cell. Identify
the lattice type, obtain the primitive reciprocal lattice vectors, and sketch the shape of the surface
1BZ.

It is good practice to convince ourselves, at the outset, that the given primitive real-space lattice vectors
do, in fact, lie within the surface plane. We can do this by first calculating a supposed surface-normal unit
vector consistent with these vectors (which we shall need later anyway) and checking that it lines up with
our expectations based on the given Miller indices.

To do this, we shall first evaluate the vector product (also known as the cross product) between our two
given primitive real-space lattice vectors, since this is guaranteed to yield a vector perpendicular to both.
In fact, the vector product between two general vectors, A and B, may conveniently be calculated by
expanding the following determinant ∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
where Ax , Ay and Az are components of A along the x̂, ŷ and ẑ directions, and where Bx , By and Bz are
similarly defined components of B. This produces a perpendicular vector of length equal to AB sin θ, with
A and B being the lengths of A and B respectively, and with θ being the angle between them.

Using the primitive real-space lattice vectors given in the question, we get

a1 × a2 =

∣∣∣∣∣∣
x̂ ŷ ẑ
1 −2 1
2 1 −1

∣∣∣∣∣∣ = x̂ + 3ŷ + 5ẑ

and the length of this is simply
√

(12 + 32 + 52) =
√

35, giving us

n̂ =
1√
35

[x̂ + 3ŷ + 5ẑ]

as the supposed surface-normal unit vector.

As a (technically unnecessary) double-check on our arithmetic, we can now calculate the scalar product
(also known as the dot product) of this vector with each of our primitive real-space lattice vectors. Recall
that the scalar product of two general vectors, A and B, is just given by

A.B = AxBx + AyBy + AzBz

where the components of A and B are defined as before. It is left as an exercise for the reader to confirm
that the scalar product of n̂ with either a1 or a2 will yield a result of precisely zero. Since an alternative
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form of the scalar product is simply AB cos θ, this then confirms that both a1 and a2 must lie at right-angles
to the surface-normal unit vector.

The question, then, is whether the supposed surface-normal unit vector we have just calculated does, in-
deed, point in the same direction as would be implied by the Miller indices. In a general case, we really ought
to refer to the definition of Miller indices given in Section 2.3 of the text, where the surface plane (hkl)
is determined by its intercepts with the primitive real-space lattice vectors falling at fractional distances
1/h, 1/k , and 1/l . Proving that our calculated surface-normal unit vector does indeed lie perpendicular
to the surface plane will then generally involve us in some potentially quite tricky geometry. Fortunately,
however, the system we are discussing here is cubic, and this allows us to make use of the following very
convenient observation...

In cubic systems (and only in cubic systems) the surface-normal unit vector simply points in the direction
hx̂ + k ŷ + l ẑ (so long as our cubic bulk unit cell was aligned with the x̂, ŷ and ẑ unit vectors). This
statement is emphatically not true for non-cubic lattices, and was omitted from the main text of this book
because it is dangerous to have it lurking in one’s head as a possible way to define the surface normal.
Now that you have seen this statement, you must solemnly promise to remember not to rely upon it unless
your system is cubic. Since our present system is cubic, however, we can use it to confirm that our vector
n̂ does, indeed, point in the correct direction for the (135) surface.

After this rather lengthy preamble, we may now move on to tackle the problem we have actually been set.

First, we might usefully check whether the given primitive real-space lattice vectors are of equal length or
not. In this instance, we can see quite readily that this is true, since

√
(12 + 22 + 12) =

√
(22 + 12 + 12) =√

6 in whatever units we happen to be using. This rules out the rectangular and oblique lattice types, for
which a pair of primitive real-space lattice vectors cannot be of equal length.

Next, we need to work out the angle between our two vectors, which is most easily done by first evaluating
their scalar product, obtaining a1.a2 = (1× 2)− (2× 1)− (1× 1) = −1 in our case. Remembering that
the scalar product of two vectors can also be thought of as the product of their two lengths and the cosine
of the angle between them, and knowing that the lengths in this case are both

√
6, we have

cos θ = −1/6

and thus θ = 99.6◦. This eliminates the square and triangular lattices, for which the corresponding angle
would be 90◦ or 120◦ respectively, leaving the rhombic lattice as the only remaining possibility.

To obtain the primitive reciprocal lattice vectors, we need to evaluate the expressions from Eqn. 2.11 in
Section 2.6, namely

b1 = 2π
a2 × n̂

|a1 × a2|
; b2 = 2π

n̂× a1

|a1 × a2|
where we are indeed fortunate to have already calculated both the surface-normal unit vector, n̂, and the
length of the vector a1 × a2.
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We then have

a2 × n̂ =
1√
35

∣∣∣∣∣∣
x̂ ŷ ẑ
2 1 −1
1 3 5

∣∣∣∣∣∣ =
1√
35

[8x̂− 11ŷ + 5ẑ]

and

n̂× a1 =
1√
35

∣∣∣∣∣∣
x̂ ŷ ẑ
1 3 5
1 −2 1

∣∣∣∣∣∣ =
1√
35

[13x̂ + 4ŷ − 5ẑ]

for our numerators. Using these, we find

b1 =
2π

35
[8x̂− 11ŷ + 5ẑ]

b2 =
2π

35
[13x̂ + 4ŷ − 5ẑ]

as our primitive reciprocal lattice vectors. Despite looking quite different in form, these are of equal length
to one another (2π

√
(82 + 112 + 52)/35 = 2π

√
(132 + 42 + 52)/35 = 2π

√
210/35) reflecting the fact

that the primitive real-space lattice vectors were themselves of equal length.

If we are sufficiently confident in our working, it may be acceptable to move on to the final part of the
question, but it is better practice to double-check our results. We can do this because the expressions in
Eqn. 2.11 are explicitly designed to ensure that the following identity holds true

ap.bq = 2πδpq

where δpq is the Kronecker delta (i.e. unity if the indices are equal, zero if unequal). This, in turn, guaran-
tees that the scalar product between any one of our real-space lattice vectors and any one of our reciprocal
lattice vectors must be an integer multiple of 2π (see Eqn. 2.10 in Section 2.6).

For our first check, setting p = q = 1, we get

a1.b1 =
2π

35
[x̂− 2ŷ + ẑ] . [8x̂− 11ŷ + 5ẑ]

=
2π

35
[(1× 8) + (2× 11) + (1× 5)]

= 2π

while with p = 1 and q = 2 we have

a1.b2 =
2π

35
[x̂− 2ŷ + ẑ] . [13x̂ + 4ŷ − 5ẑ]

=
2π

35
[(1× 13)− (2× 4)− (1× 5)]

= 0

as expected. The other two combinations are left as an exercise for the reader.
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For the last part of the question, we are asked to sketch the shape of the surface 1BZ. To do this, it will
be necessary first to sketch (fairly accurately) a portion of the surface reciprocal lattice. We have already
shown that the two primitive reciprocal lattice vectors are of equal length to one another (2π

√
210/35) but

it would be useful to obtain the angle between them. Let us, therefore, calculate one last scalar product,
namely b1.b2 = 4π2 [(8× 13)− (11× 4)− (5× 5)] /352 = 4π2/35. We can therefore write

cos θ′ =
4π2/35

(2π
√

210/35)2

=
1

6

and hence θ′ = 80.4◦ for the angle between the primitive reciprocal lattice vectors (note, in passing, that
θ + θ′ = 180◦, which must be true in all cases).

Figure 3: Scale drawing of the reciprocal lattice, with the 1BZ shaded (and bounded by perpendicular bisectors of
reciprocal lattice vectors).

Now we can make a reasonable scale drawing of the reciprocal lattice (Fig. 3) onto which we may add
construction lines perpendicularly bisecting the reciprocal lattice vectors. Once we have drawn enough to
identify a region lying closer to the origin than to any other reciprocal lattice point, we will have succeeded
in highlighting the 1BZ.


