Lessons Chapter 15: Prospect Theory

- 1. Prospect Theory Features Decreasing Sensitivity and Loss Aversion
 - Lottery represents uncertain outcomes

$$L = \{x_1, p_1; \; x_2, p_2; \; x_3, p_3; \; \ldots; x_n, p_n\}$$

• Example: Startup lottery

$$L = \{-64, 0.50; 900, 0.50\}$$

• Utility function incorporates decreasing sensitivity and loss aversion

$$u(x)=x^\mu ext{ for } x\geq 0$$
 $u(x)=-\lambda\cdot (-x)^\mu ext{ for } x< 0$

- Decreasing sensitivity: $\mu < 1$
- Loss aversion: $\lambda > 1$
- Figure 15.1 Utility Function for Prospect Theory
- Widget 15.1: Prospect Utility Curves
- 2. Certainty Equivalent Measures WTP to Play a Lottery
 - Utility value is weighted sum of outcomes

$$v(L)=p_1\cdot u(x_1)+p_2\cdot u(x_2)$$

Startup example ($\lambda = 2$, $\mu = 0.50$)

$$v(L) = -rac{1}{2} \cdot 2 \cdot 64^{1/2} + rac{1}{2} \cdot 900^{1/2} = -8 + 15 = 7 ext{ utils}$$

• Certainty equivalent translates utility value into dollar value

$$u(c(L)) = v(L)$$
 $u(x) = x^{1/2} \implies x = u^2 \text{ or } c(L) = v(L)^2$ $c(L) = v(L)^2 \implies c(L) = (7)^2 = \49

• Figure 15.2 The Startup Lottery with Prospect Theory

• Widget 15.2: Measures of a Mixed Lottery

3. Risk Aversion from Decreasing Sensitivity & Loss Aversion

- Risk aversion
 - Risk Aversion: c(L) < m(L)
 - Startup lottery: c(L) < \$418
- Risk premium: r(L) = m(L) c(L)
- Figure 15.3 Risk Aversion and the Risk Premium
- Risk neutrality: $c(L) = m(L) \Rightarrow r(L) = 0$
- Figure 15.4 Risk Neutrality
 - $\circ \ \ u(x)=10\cdot x; \ \ \lambda=1$
 - Risk neutrality from linear utility and no loss aversion
- 4. Experiments Reveal the Values of Key Parameters
 - Loss aversion
 - Tversky et al: $\lambda = 2.25$
 -
• Abdellaoui et al: $\lambda = 1.79 \rightarrow 4.80$
 - Sokol-Hessner et al: $\lambda = 0.41
 ightarrow 3.91$; mean $\lambda = 1.40$
 - Decreasing sensitivity to gain

I'll flip a coin. If it's heads, I'll give you \$100. If it's tails, I'll give you nothing. Or, we can forget about flipping the coin, and I'll give you \$20 for certain. It's your choice--a coin flip with equal chances of \$100 or nothing, or \$20 for sure.

• Estimating value of μ for gain

$$\mu = rac{Log(p)}{Log(c) - Log(x)}$$

• Example

$$\mu = rac{Log(0.50)}{Log(25) - Log(100)} = 0.50$$

• Decreasing sensitivity loss

I'll flip a coin. If it's heads, you pay \$100. If it's tails, you pay nothing, and your tax liability disappears. Or, we can forget about flipping the coin, and you pay \$50 for certain. It's your choice--a coin flip with equal chances of paying \$100 or nothing, or pay \$50 for sure."

• Estimating value of μ for gain

$$\mu = rac{Log(p)}{Log(-c) - Log(-x)}$$

• Example

$$\mu = rac{Log(0.50)}{Log(25) - Log(100)} = 0.50$$

<u>Widget 15.3: Compute the Values of Your Utility Parameters</u>

- Bisection method for decreasing sensitivity
 - Find midpoint of two extremes
 - Figure 15.5 Bisection Method for Stimulus-Response Calculations
 - Results

```
perceived \ sweetness = (sugar \ concentration)^{0.60}
```

perceived warmth of a large patch of $skin = (skin \ temperature)^{0.70}$

- 5. Rat Behavior is Consistent with Prospect Theory
 - Thirsty lab rats chose between certain and uncertain water rewards
 - Flashing lights for the probabilities of the uncertain rewards
 - Auditory clicks for volumes of water for certain and uncertain rewards
 - Results
 - Decreasing sensitivity: $\mu = 0.54$.
 - Loss aversion: $\lambda = 1.66$.
 - Figure 15.6 Value Function for Rats
 - Substantial variation in risk preferences across rats
 - For small number of rats, $\mu > 1$
 - For 44% of the rats, $\lambda < 1$