Lessons Chapter 15: Prospect Theory

1. Prospect Theory Features Decreasing Sensitivity and Loss Aversion

- Lottery represents uncertain outcomes

$$
L=\left\{x_{1}, p_{1} ; x_{2}, p_{2} ; x_{3}, p_{3} ; \ldots ; x_{n}, p_{n}\right\}
$$

- Example: Startup lottery

$$
L=\{-64,0.50 ; 900,0.50\}
$$

- Utility function incorporates decreasing sensitivity and loss aversion

$$
\begin{gathered}
u(x)=x^{\mu} \text { for } x \geq 0 \\
u(x)=-\lambda \cdot(-x)^{\mu} \text { for } x<0
\end{gathered}
$$

- Decreasing sensitivity: $\mu<1$
- Loss aversion: $\lambda>1$
- Figure 15.1 Utility Function for Prospect Theory
- Widget 15.1: Prospect Utility Curves

2. Certainty Equivalent Measures WTP to Play a Lottery

- Utility value is weighted sum of outcomes

$$
v(L)=p_{1} \cdot u\left(x_{1}\right)+p_{2} \cdot u\left(x_{2}\right)
$$

Startup example ($\lambda=2, \mu=0.50$)

$$
v(L)=-\frac{1}{2} \cdot 2 \cdot 64^{1 / 2}+\frac{1}{2} \cdot 900^{1 / 2}=-8+15=7 \text { utils }
$$

- Certainty equivalent translates utility value into dollar value

$$
\begin{gathered}
u(c(L))=v(L) \\
u(x)=x^{1 / 2} \Longrightarrow x=u^{2} \text { or } c(L)=v(L)^{2} \\
c(L)=v(L)^{2} \Longrightarrow c(L)=(7)^{2}=\$ 49
\end{gathered}
$$

- Figure 15.2 The Startup Lottery with Prospect Theory
- Widget 15.2: Measures of a Mixed Lottery

3. Risk Aversion from Decreasing Sensitivity \& Loss Aversion

- Risk aversion
- Risk Aversion: $c(L)<m(L)$
- Startup lottery: $c(L)<\$ 418$
- Risk premium: $r(L)=m(L)-c(L)$
- Figure 15.3 Risk Aversion and the Risk Premium
- Risk neutrality: $c(L)=m(L) \Rightarrow r(L)=0$
- Figure 15.4 Risk Neutrality
- $u(x)=10 \cdot x ; \quad \lambda=1$
- Risk neutrality from linear utility and no loss aversion

4. Experiments Reveal the Values of Key Parameters

- Loss aversion
- Tversky et al: $\lambda=2.25$
- Abdellaoui et al: $\lambda=1.79 \rightarrow 4.80$
- Sokol-Hessner et al: $\lambda=0.41 \rightarrow 3.91$; mean $\lambda=1.40$
- Decreasing sensitivity to gain

I'll flip a coin. If it's heads, I'll give you $\$ 100$. If it's tails, I'll give you nothing. Or, we can forget about flipping the coin, and I'll give you $\$ 20$ for certain. It's your choice--a coin flip with equal chances of $\$ 100$ or nothing, or $\$ 20$ for sure.

- Estimating value of μ for gain

$$
\mu=\frac{\log (p)}{\log (c)-\log (x)}
$$

- Example

$$
\mu=\frac{\log (0.50)}{\log (25)-\log (100)}=0.50
$$

- Decreasing sensitivity loss

I'll flip a coin. If it's heads, you pay $\$ 100$. If it's tails, you pay nothing, and your tax liability disappears. Or, we can forget about flipping the coin, and you pay $\$ 50$ for certain. It's your choice--a coin flip with equal
chances of paying $\$ 100$ or nothing, or pay $\$ 50$ for sure."

- Estimating value of μ for gain

$$
\mu=\frac{\log (p)}{\log (-c)-\log (-x)}
$$

- Example

$$
\mu=\frac{\log (0.50)}{\log (25)-\log (100)}=0.50
$$

- Widget 15.3: Compute the Values of Your Utility Parameters
- Bisection method for decreasing sensitivity
- Find midpoint of two extremes
- Figure 15.5 Bisection Method for Stimulus-Response Calculations
- Results

$$
\begin{gathered}
\text { perceived sweetness }=(\text { sugar concentration })^{0.60} \\
\text { perceived warmth of a large patch of skin }=(\text { skin temperature })^{0.70}
\end{gathered}
$$

5. Rat Behavior is Consistent with Prospect Theory

- Thirsty lab rats chose between certain and uncertain water rewards
- Flashing lights for the probabilities of the uncertain rewards
- Auditory clicks for volumes of water for certain and uncertain rewards
- Results
- Decreasing sensitivity: $\mu=0.54$.
- Loss aversion: $\lambda=1.66$.
- Figure 15.6 Value Function for Rats
- Substantial variation in risk preferences across rats
- For small number of rats, $\mu>1$
- For 44% of the rats, $\lambda<1$

