
Answers to additional problems

13.1	 The equation can be re-written as, v = l t–1.
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13.2	 We start by rewriting the expression slightly, as τ = (2½/π) (Δν)–1 where the first term in 
brackets is a constant.

Differentiating with eqn. (12.3) gives,	   
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13.3	 Using eqn. (13.2), we say, 
d
d

I


 = 1
2

× k × v
−

1
2  = 

k
v2

13.4	
d
dT


 = 
3
2

1
2×kT 	

Tidying yields, 
d
d


T
 = 

3
2

1
2k

T   or 
3

2

1
2kT

  or even 
3

2
k T

13.5	
d
d
M
c n

kc n
= ×

−










1
1

1

It might be worth tidying this expression slightly as 
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13.6	 The equation can be rewritten as V
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13.7	 We first rewrite this equation slightly, as,
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where both the bracketed terms are wholly constant.
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Tidying up yields,	  
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The two factors of 2 in the right-hand term cancel, leaving,
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13
Differentiation I
Rates of change, tangents,  
and differentiation
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2 13: Differentiation I

13.8	 We can rewrite the equation slightly, as I I
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Tidying the derivative slightly yields, 
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13.9	 The equation can be rewritten as, p
RT
V

RTB
V

RTC
V

= + +

m m m
2 3 , and thence
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Factorizing simplifies further,	
d
d m m m m

p
V

RT
V

B
V

C
V

� � � �

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
�

�

�
�

�

�
�

1 2 3
2 3 4

13.10	 The equation can be rewritten as, b
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We might choose to rewrite as 
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