## APPENDIX D

## sOME USEFUL NETWORK THEOREMS

## Introduction

In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin's theorem, Norton's theorem, and the source-absorption theorem.

## D. 1 Thévenin's Theorem

Thévenin's theorem is used to represent a part of a network by a voltage source $V_{t}$ and a series impedance $Z_{t}$, as shown in Fig. D.1. Figure D.1(a) shows a network divided into two parts, A and B. In Fig. D.1(b), part A of the network has been replaced by its Thévenin equivalent: a voltage source $V_{t}$ and a series impedance $Z_{t}$. Figure D.1(c) illustrates how $V_{t}$ is to be determined: Simply open-circuit the two terminals of network A and measure (or calculate) the voltage that appears between these two terminals. To determine $Z_{t}$, we reduce all external (i.e., independent) sources in network A to zero by short-circuiting voltage sources and open-circuiting current sources. The impedance $Z_{t}$ will be equal to the input impedance of network A after this reduction has been performed, as illustrated in Fig. D.1(d).

## D. 2 Norton's Theorem

Norton's theorem is the dual of Thévenin's theorem. It is used to represent a part of a network by a current source $I_{n}$ and a parallel impedance $Z_{n}$, as shown in Fig. D.2. Figure D.2(a) shows a network divided into two parts, A and B. In Fig. D.2(b), part A has been replaced by its Norton's equivalent: a current source $I_{n}$ and a parallel impedance $Z_{n}$. The Norton's current source $I_{n}$ can be measured (or calculated) as shown in Fig. D.2(c). The terminals of the network being reduced (network A) are shorted, and the current $I_{n}$ will be equal simply to the short-circuit current. To determine the impedance $Z_{n}$, we first reduce the external excitation in network A to zero: That is, we short-circuit independent voltage sources and open-circuit independent current sources. The impedance $Z_{n}$ will be equal to the input impedance of network A after this source-elimination process has taken place. Thus the Norton impedance $Z_{n}$ is equal to the Thévenin impedance $Z_{t}$. Finally, note that $I_{n}=V_{t} / Z$, where $Z=Z_{n}=Z_{t}$.


Figure D. 2 Norton's theorem.

## Example D. 1

Figure D.3(a) shows a bipolar junction transistor circuit. The transistor is a three-terminal device with the terminals labeled E (emitter), B (base), and C (collector). As shown, the base is connected to the dc power supply $V^{+}$via the voltage divider composed of $R_{1}$ and $R_{2}$. The collector is connected to the dc supply $V^{+}$ through $R_{3}$ and to ground through $R_{4}$. To simplify the analysis, we wish to apply Thévenin's theorem to reduce the circuit.

## Solution

Thévenin's theorem can be used at the base side to reduce the network composed of $V^{+}, R_{1}$, and $R_{2}$ to a dc voltage source $V_{B B}$,

$$
V_{B B}=V^{+} \frac{R_{2}}{R_{1}+R_{2}}
$$



Figure D. 3 Thévenin's theorem applied to simplify the circuit of (a) to that in (b). (See Example D.1.)
and a resistance $R_{B}$,

$$
R_{B}=R_{1} \| R_{2}
$$

where $\|$ denotes "in parallel with." At the collector side, Thévenin's theorem can be applied to reduce the network composed of $V^{+}, R_{3}$, and $R_{4}$ to a dc voltage source $V_{C C}$,

$$
V_{C C}=V^{+} \frac{R_{4}}{R_{3}+R_{4}}
$$

and a resistance $R_{C}$,

$$
R_{C}=R_{3} \| R_{4}
$$

The reduced circuit is shown in Fig. D.3(b).

## D. 3 Source-Absorption Theorem

Consider the situation shown in Fig. D.4. In the course of analyzing a network, we find a controlled current source $I_{x}$ appearing between two nodes whose voltage difference is the controlling voltage $V_{x}$. That is, $I_{x}=g_{m} V_{x}$ where $g_{m}$ is a conductance. We can replace this controlled source by an impedance $Z_{x}=V_{x} / I_{x}=1 / g_{m}$, as shown in Fig. D.4, because the current drawn by this impedance will be equal to the current of the controlled source that we have replaced.


Figure D. 4 The source-absorption theorem.

## Example D. 2

Figure D.5(a) shows the small-signal, equivalent-circuit model of a transistor. We want to find the resistance $R_{i n}$ "looking into" the emitter terminal E-that is, the resistance between the emitter and ground-with the base B and collector C grounded.

(a)

(b)

Figure D. 5 Circuit for Example D.2.

## Solution

From Fig. D.5(a), we see that the voltage $v_{\pi}$ will be equal to $-v_{e}$. Thus, looking between E and ground, we see a resistance $r_{\pi}$ in parallel with a current source drawing a current $g_{m} v_{e}$ away from terminal E. The latter source can be replaced by a resistance $\left(1 / g_{m}\right)$, resulting in the input resistance $R_{\text {in }}$ given by

$$
R_{\mathrm{in}}=r_{\pi} \|\left(1 / g_{m}\right)
$$

as illustrated in Fig. D.5(b).

## EXERCISES

D. 1 A source is measured and found to have a $10-\mathrm{V}$ open-circuit voltage and to provide 1 mA into a short circuit. Calculate its Thévenin and Norton equivalent source parameters.
Ans. $V_{t}=10 \mathrm{~V} ; Z_{t}=Z_{n}=10 \mathrm{k} \Omega ; I_{n}=1 \mathrm{~mA}$
D. 2 In the circuit shown in Fig. ED.2, the diode has a voltage drop $V_{D} \simeq 0.7 \mathrm{~V}$. Use Thévenin's theorem to simplify the circuit and hence calculate the diode current $I_{D}$. Ans. 1 mA


Figure ED. 2
D. 3 The two-terminal device M in the circuit of Fig. ED. 3 has a current $I_{M} \simeq 1 \mathrm{~mA}$ independent of the voltage $V_{M}$ across it. Use Norton's theorem to simplify the circuit and hence calculate the voltage $V_{M}$. Ans. 5 V


Figure ED. 3
D. 1 Consider the Thévenin equivalent circuit characterized by $V_{t}$ and $Z_{t}$. Find the open-circuit voltage $V_{o c}$ and the shortcircuit current $I_{\text {sc }}$ (i.e., the current that flows when the terminals are shorted together). Express $Z_{t}$ in terms of $V_{o c}$ and $I_{\mathrm{sc}}$.
D. 2 Repeat Problem D. 1 for a Norton equivalent circuit characterized by $I_{n}$ and $Z_{n}$.
D. 3 A voltage divider consists of a $9-\mathrm{k} \Omega$ resistor connected to +10 V and a resistor of $1 \mathrm{k} \Omega$ connected to ground. What is the Thévenin equivalent of this voltage divider? What output voltage results if it is loaded with $1 \mathrm{k} \Omega$ ? Calculate this two ways: directly and using your Thévenin equivalent.


Figure PD. 4
D. 4 Find the output voltage and output resistance of the circuit shown in Fig. PD. 4 by considering a succession of Thévenin equivalent circuits.
D. 5 Repeat Example D. 2 with a resistance $R_{B}$ connected between B and ground in Fig. D. 5 (i.e., rather than directly grounding the base B as indicated in Fig. D.5).
D. 6 Figure PD.6(a) shows the circuit symbol of a device known as the $p$-channel junction field-effect transistor (JFET). As indicated, the JFET has three terminals. When the gate terminal G is connected to the source terminal S , the two-terminal device shown in Fig. PD.6(b) is obtained. Its $i-v$ characteristic is given by

$$
\begin{array}{ll}
i=I_{D S S}\left[2 \frac{v}{V_{P}}-\left(\frac{v}{V_{P}}\right)^{2}\right] & \\
\text { for } v \leq V_{P} \\
i=I_{D S S} & \\
\text { for } v \geq V_{P}
\end{array}
$$

where $I_{D S S}$ and $V_{P}$ are positive constants for the particular JFET. Now consider the circuit shown in Fig. PD.6(c) and let $V_{P}=2 \mathrm{~V}$ and $I_{D S S}=2 \mathrm{~mA}$. For $V^{+}=10 \mathrm{~V}$ show that the JFET is operating in the constant-current mode and find the voltage across it. What is the minimum value of $V^{+}$for which this mode of operation is maintained? For $V^{+}=2 \mathrm{~V}$ find the values of $I$ and $V$.

(c)

Figure PD. 6

