APPENDIX D

SOME USEFUL NETWORK THEOREMS

Introduction

In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin's theorem, Norton's theorem, and the source-absorption theorem.

D.1 Thévenin's Theorem

Thévenin's theorem is used to represent a part of a network by a voltage source V_t and a series impedance Z_t , as shown in Fig. D.1. Figure D.1(a) shows a network divided into two parts, A and B. In Fig. D.1(b), part A of the network has been replaced by its Thévenin equivalent: a voltage source V_t and a series impedance Z_t . Figure D.1(c) illustrates how V_t is to be determined: Simply open-circuit the two terminals of network A and measure (or calculate) the voltage that appears between these two terminals. To determine Z_t , we reduce all external (i.e., independent) sources in network A to zero by short-circuiting voltage sources and open-circuiting current sources. The impedance Z_t will be equal to the input impedance of network A after this reduction has been performed, as illustrated in Fig. D.1(d).

D.2 Norton's Theorem

Norton's theorem is the *dual* of Thévenin's theorem. It is used to represent a part of a network by a current source I_n and a parallel impedance Z_n , as shown in Fig. D.2. Figure D.2(a) shows a network divided into two parts, A and B. In Fig. D.2(b), part A has been replaced by its Norton's equivalent: a current source I_n and a parallel impedance Z_n . The Norton's current source I_n can be measured (or calculated) as shown in Fig. D.2(c). The terminals of the network being reduced (network A) are shorted, and the current I_n will be equal simply to the short-circuit current. To determine the impedance Z_n , we first reduce the external excitation in network A to zero: That is, we short-circuit independent voltage sources and open-circuit independent current sources. The impedance Z_n will be equal to the input impedance of network A after this source-elimination process has taken place. Thus the Norton impedance Z_n is equal to the Thévenin impedance Z_t . Finally, note that $I_n = V_t/Z$, where $Z = Z_n = Z_t$.

Figure D.1 Thévenin's theorem.

Figure D.2 Norton's theorem.

Example D.1

Figure D.3(a) shows a bipolar junction transistor circuit. The transistor is a three-terminal device with the terminals labeled E (emitter), B (base), and C (collector). As shown, the base is connected to the dc power supply V^+ via the voltage divider composed of R_1 and R_2 . The collector is connected to the dc supply V^+ through R_3 and to ground through R_4 . To simplify the analysis, we wish to apply Thévenin's theorem to reduce the circuit.

Solution

Thévenin's theorem can be used at the base side to reduce the network composed of V^+ , R_1 , and R_2 to a dc voltage source V_{BB} ,

$$V_{BB} = V^+ \frac{R_2}{R_1 + R_2}$$

©2020 Oxford University Press

Reprinting or distribution, electronically or otherwise, without the express written consent of Oxford University Press is prohibited.

Figure D.3 Thévenin's theorem applied to simplify the circuit of (a) to that in (b). (See Example D.1.)

and a resistance R_B ,

$$R_{B} = R_{1} \parallel R_{2}$$

where \parallel denotes "in parallel with." At the collector side, Thévenin's theorem can be applied to reduce the network composed of V^+ , R_3 , and R_4 to a dc voltage source V_{CC} ,

$$V_{CC} = V^+ \frac{R_4}{R_3 + R_4}$$

and a resistance R_c ,

$$R_C = R_3 \parallel R_4$$

The reduced circuit is shown in Fig. D.3(b).

D.3 Source-Absorption Theorem

Consider the situation shown in Fig. D.4. In the course of analyzing a network, we find a controlled current source I_x appearing between two nodes whose voltage difference is the controlling voltage V_x . That is, $I_x = g_m V_x$ where g_m is a conductance. We can replace this controlled source by an impedance $Z_x = V_x/I_x = 1/g_m$, as shown in Fig. D.4, because the current drawn by this impedance will be equal to the current of the controlled source that we have replaced.

Example D.2

Figure D.5(a) shows the small-signal, equivalent-circuit model of a transistor. We want to find the resistance R_{in} "looking into" the emitter terminal E—that is, the resistance between the emitter and ground—with the base B and collector C grounded.

Figure D.5 Circuit for Example D.2.

Solution

From Fig. D.5(a), we see that the voltage v_{π} will be equal to $-v_e$. Thus, looking between E and ground, we see a resistance r_{π} in parallel with a current source drawing a current $g_m v_e$ away from terminal E. The latter source can be replaced by a resistance $(1/g_m)$, resulting in the input resistance R_{in} given by

$$R_{\rm in}=r_{\pi}\parallel(1/g_m)$$

as illustrated in Fig. D.5(b).

EXERCISES

- D.1 A source is measured and found to have a 10-V open-circuit voltage and to provide 1 mA into a short circuit. Calculate its Thévenin and Norton equivalent source parameters.
 Ans. V_t = 10 V; Z_t = Z_n = 10 kΩ; I_n = 1 mA
- **D.2** In the circuit shown in Fig. ED.2, the diode has a voltage drop $V_D \simeq 0.7$ V. Use Thévenin's theorem to simplify the circuit and hence calculate the diode current I_D . Ans. 1 mA

Figure ED.2

D.3 The two-terminal device M in the circuit of Fig. ED.3 has a current $I_M \simeq 1$ mA independent of the voltage V_M across it. Use Norton's theorem to simplify the circuit and hence calculate the voltage V_M . Ans. 5 V

PROBLEMS

D.1 Consider the Thévenin equivalent circuit characterized by V_t and Z_t . Find the open-circuit voltage V_{oc} and the short-circuit current I_{sc} (i.e., the current that flows when the terminals are shorted together). Express Z_t in terms of V_{oc} and I_{sc} .

D.2 Repeat Problem D.1 for a Norton equivalent circuit characterized by I_n and Z_n .

D.3 A voltage divider consists of a 9-k Ω resistor connected to +10 V and a resistor of 1 k Ω connected to ground. What is the Thévenin equivalent of this voltage divider? What output voltage results if it is loaded with 1 k Ω ? Calculate this two ways: directly and using your Thévenin equivalent.

D.4 Find the output voltage and output resistance of the circuit shown in Fig. PD.4 by considering a succession of Thévenin equivalent circuits.

D.5 Repeat Example D.2 with a resistance R_B connected between B and ground in Fig. D.5 (i.e., rather than directly grounding the base B as indicated in Fig. D.5).

D.6 Figure PD.6(a) shows the circuit symbol of a device known as the *p*-channel junction field-effect transistor (JFET). As indicated, the JFET has three terminals. When the gate terminal G is connected to the source terminal S, the two-terminal device shown in Fig. PD.6(b) is obtained. Its i-v characteristic is given by

$$i = I_{DSS} \left[2 \frac{v}{V_P} - \left(\frac{v}{V_P} \right)^2 \right] \quad \text{for } v \le V_P$$
$$i = I_{DSS} \quad \text{for } v \ge V_P$$

where I_{DSS} and V_P are positive constants for the particular JFET. Now consider the circuit shown in Fig. PD.6(c) and let $V_P = 2$ V and $I_{DSS} = 2$ mA. For $V^+ = 10$ V show that the JFET is operating in the constant-current mode and find the voltage across it. What is the minimum value of V^+ for which this mode of operation is maintained? For $V^+ = 2$ V find the values of I and V.

Figure PD.6