Table 8.1: supplementary online material

Seven models of continental shelf ecosystems giving their geographic locality, the principal primary and secondary production processes and other key components and characteristics at higher trophic levels (adapted from Longhurst 1995).

Model	Geographic location	Primary and secondary production	Higher trophic levels
Model 1	Eastern Siberian and Laptev	Productivity is light-limited,	Benthic invertebrates are
Polar irradiance-	Sea coasts of Siberia.	with seasonal cycle	abundant and diverse
mediated	Northeastern and Northern	symmetrical about local	providing food for abundant
production peak in	coasts of Greenland.	irradiance maximum. Latter	but low-diversity populations
regions	Northern coasts of Canadian	corresponds with solar	of fish and squid. Large
permanently ice-	archipelago to west Beaufort	maximum or minimal snow	euphausiids (krill),
covered	Sea.	cover.	characteristic of open-water
	Almost entire coast of	Below ice, phytoplankton	regions, are replaced by small
	Antarctica.	productivity and zooplankton	Euphausia crystallophorias

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		biomass are low, but	and provide food for pelagic
		abundant flora in the	fish (<i>Pleurogramma</i> spp.) and
		infiltration zone at the ice-	crab-eater seals.
		seawater matrix. Underside of	
		ice <2 m thick may support	
		dense growth of diatoms	
		associated with abundant	
		polychaetes, copepods, and	
		amphipods.	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
Model 2	Coasts of Greenland.	Shallow polar halocline	Production exceeds
Polar irradiance-	North America from	induces water column stability	consumption in the water
mediated	Newfoundland to the	very early in open-water.	column and supports rich and
production peak in	Aleutians.	Productivity is light limited, its	diverse macrobenthos,
regions where ice-	Northern Asia from Finland to	seasonal cycle being	especially in boreal regions,
cover disperses	the Sea of Okhotsk.	symmetrical about the local	where shelf areas uncovered
partially or	Short sectors of Antarctic	irradiance maximum. Where	by ice are much more
completely in	coast in midsummer in	pack-ice remains, conditions	extensive than around
summer, or only	eastern Ross Sea, to east of	may resemble Model 1.	Antarctica. Low-diversity fish
where broken	Ronne ice shelf and in	After ice-melt, in open water,	fauna, especially in the
pack-ice develops.	Dumont d'Urville Sea.	phytoplankton accumulates	Antarctic, where small
		during the period when	Notothenids dominate. The
		<u> </u>	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		productivity increases, and	wider Arctic shelves support a
		then tracks its initial decline.	greater diversity of Gadidae,
		Phytoplankton is dominated	Sebastidae, Anarhichas spp.
		by diatoms, a subsurface	Grey whale, walrus, and
		chlorophyll maximum is often	bearded seal are boreal
		observed; in shoal water,	benthic feeders, having no
		significant biomass of benthic	austral equivalents.
		macroalgae develop.	
		Planktonic herbivores are	
		represented by abundant	
		large copepods, euphausiids	
		and salps, of which some	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		species form swarms that	
		support major stocks of	
		baleen whales and seals.	
Model 3	On mid-latitude continental	After winter mixing, a pulse of	Most autotrophic production
Canonical spring-	shelves, under the influence	productivity and chlorophyll is	passes directly or indirectly
autumn blooms of	of the global westerly winds.	induced by establishment of	through the macrobenthos,
mid-latitude	From Finland to Iberia and off	water column stability.	which is abundant, diverse,
continental shelves	the Mediterranean.	Thereafter summer	and characteristic of each
	From Newfoundland to	stratification is associated with	sediment type.
	Florida. Off Tasmania and	relatively low productivity.	Diversity of fish fauna
	southern Australia.	Progressive mixing in autumn	exceeds that in polar
		may induce renewed	ecosystems (typically 200

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		productivity fuelled by	species of >50 families). In
		nutrients accumulated below	boreal regions, major stocks
		the summer pycnocline.	of shoaling Clupeidae and
		This sequence is modified by	Scombridae together with
		intermittent wind-induced	mainly demersal Gadidae,
		coastal convergence and	Percidae, and Pleuronectidae.
		divergence, and persistent	In much more restricted
		water column mixing in	austral shelf regions, clupeids
		regions where tidal velocities	occur as in the north, together
		exceed critical value. Effects	with a more-difficult-to-specify
		of estuarine turbidity plumes	demersal fauna. Energy flow
		may mask the canonical	from pelagic invertebrates is

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		sequence, which weakens	mainly to clupeids and
		towards the equator. The	scombrids, from benthos
		balance between pico-	mainly to demersal fish fauna.
		autotrophs and larger algal	
		cells is more equitable than in	
		very high latitudes. In shoal	
		water, especially at higher	
		latitudes (Norway, Iceland,	
		Newfoundland, Tasmania)	
		there is significant autotrophic	
		production in kelp beds. Small	
		copepods dominate the	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		inshore herbivorous plankton,	
		larger species nearer the shelf	
		edge, often over-wintering in	
		deep water. Their seasonal	
		cycle of abundance follows	
		that of phytoplankton.	
Model 4	Falklands shelf, the southern	The seasonal productivity	In many respects the
Topography-forced	North Sea, the shelf of the	schedule, otherwise	heterotrophic biota, and
summer	Gulf of Alaska where tidal	appropriate to Model 3, is	energy flows, are broadly
production	mixing consistently dominates	instead forced by other factors	similar to those appropriate to
	the stability of the water mass,	(see adjacent column),	Model 3 ecosystems.
	temperate North Pacific where	differing regionally.	

Kaiser et al: Marine Ecology 3e Table 8.1

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
	the oceanic permanent	Consequently, phytoplankton	
	halocline passes inshore	productivity tends to peak in	
	across the shelf, so	mid-summer rather than in	
	constraining winter mixing to	spring.	
	water above the pycnocline.	In many respects the	
	New Zealand and similar	autotrophic biota, and energy	
	locations where,	flows, are broadly similar to	
	topographically-forced	those appropriate to Model 3	
	upwelling sites in shallow	ecosystems.	
	water dominate the		
	productivity sequence.		

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
Model 5	The Atlantic from Iberia to	These are the 'classical'	Benthic consumers are
Intermittent	Senegal and Gabon to	coastal upwelling regions of	abundant, but not diverse,
production at	Benguela.	eastern boundary current and	and there is much physical
coastal	The Pacific from Oregon to	other coasts, some of which	export of organic material into
divergences.	Mexico and Peru to southern	occur at relatively low	deep basins on the shelf or
	Chile. The Indian Ocean from	latitudes. The shelf is	across the shelf edge into
	Oman to Kenya.	characteristically narrow, and	deep water. Along the shelf
		the influence of river effluents	edge, deep-water rockfish
		minor.	(Sebastes) are abundant,
		The equator-ward component	characteristic, and diverse.
		of the Trade winds induces	Anchovies (Engraulis,
		strong and persistent offshore	<i>Cetengraulis</i>) are ubiquitous

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		Ekman drift, inducing	vertebrate herbivores, with in
		upwelling of nutrient-rich deep	addition, sardines (Sardinella
		water. This process is usually	longiceps) in the Indian
		strongest during summer.	Ocean. Populations of
		Similarly, in the Indian Ocean	predators, mostly pelagic
		the South-west Monsoon	clupeids (Sardina, Sardinops),
		forces offshore drift,	mackerel (Scomber), hake
		principally off Somalia.	(Merluccius, Micromesistius),
		Upwelling results in a rapid	sealions, and piscivorous
		increase in primary production	seabirds are characteristic of
		of phytoplankton, principally	these regions.
		diatoms, and chlorophyll	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		accumulation coincides with	
		the	
		duration of upwelling periods.	
		The biota have low diversity	
		and high collective biomass.	
		Specialized invertebrate	
		herbivores are large calanoid	
		copepods (typically Calanus	
		or Calanoides), euphausiids	
		and filter-feeding anomuran	
		crabs, each having life history	
		tactics that take them into	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		deep water, or the shallow	
		sea-floor, during non-	
		upwelling periods. Kelp	
		forests reach their maximum	
		development and generate	
		significant autotrophic	
		production and accumulation	
		of biomass. There is heavy,	
		intermittent settlement of large	
		phytoplankton cells and faecal	
		material to the sediments,	
		frequently resulting in an	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		oxygen deficit at certain	
		depths on the narrow shelves.	
Model 6	Amazon, Niger, Congo, Indus,	Trade wind regimes force only	Benthic community types
Small amplitude	Ganges, Irrawaddy, Mekong,	weak seasonality in mixed	conform to sediment types,
response to trade	and others. These are wet	layer depth, observed minor	and where these resemble
wind seasonality in	tropical coasts, dominated by	changes represent the	those of cooler seas,
regions with	the effluent of a few major	geostrophic response of the	members of the global suite of
significant coastal	rivers or many smaller river	pycnocline to seasonality in	benthic infaunal communities
river discharges	systems.	trade wind stress rather than	occur (e.g. clams such as
which dominate	In the Atlantic, the Gulf of	mixing. The basin-wide slope	Venus).
over oceanic	Guinea, the Guianas, and	of the thermocline has	Inshore, organic-rich
processes that	northern Brazil. In the eastern	important consequences in	sediments may be extensive

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
would otherwise	Pacific, from Columbia to	the Pacific and Atlantic	and support stocks of
determine	southern Mexico. In the Indo-	Oceans; to the west it lies	crustacea dominated by
seasonal changes.	Pacific, from the South China	deeper than the shelfedge,	penaeid shrimps. These
	Sea to south-western India,	but in the east it is at mid-	sediments are prone to
	including much of the	shelf level. In the east,	resuspension by wave action
	Indonesian Archipelago and	therefore, the benthic regime	in monsoon seasons.
	the northern coast of	has typical tropical character	Fish fauna is diverse at all
	Australia.	shorewards of this line, but	taxonomic levels and includes
		more temperate	a higher proportion of pelagic
		characteristics in cool water	species than in Models 3 and
		seawards. On eastern Atlantic	4 at higher latitudes.
		and Pacific coasts, the	
		<u> </u>	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		nutrient cline is perennially	
		shallower than the photic	
		depth, except during	
		exceptional events, and	
		vertically-integrated	
		production rate is not normally	
		light-limited. Everywhere, river	
		discharges into the low-	
		salinity surface layer have	
		strong seasonality, reflecting	
		regimes of wet and dry	
		seasons, so that the seasonal	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		schedule of primary	
		production rate is governed by	
		nutrient input from the land	
		and possibly reduced	
		irradiance due to prolonged	
		heavy cloud cover during wet	
		seasons. Autotrophic	
		organisms are typically small	
		cells, except in coastal	
		blooms fuelled by river-borne	
		nitrate, which are dominated	
		by Coscinodiscus and other	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		diatoms. The biomass of	
		coastal subtidal macroalgae is	
		not significant due to water	
		turbidity. Consumers are	
		numerically dominated by	
		small copepods, but diatom	
		blooms support large stocks	
		of herbivorous clupeids	
		(Atlantic— <i>Ethmalosa</i> ,	
		<i>Brevoortia</i> ; Indo-Pacific—	
		Sardinella longiceps). A large	
		proportion of diatom material	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		sinks to the seabed.	
Model 7	In the Atlantic, only the	Ecosystem of shallow seas off	The macrobenthos associated
Small amplitude	Caribbean. In the Indo-Pacific	the coasts of the dry tropics,	with coral reef formations is
response to trade	parts of the Arabian Sea, the	where river effluents are	exceptionally diverse at all
wind seasonality in	Red Sea, north-east Australia,	minimal. Many isolated	taxonomic levels.
regions off dry	and of the Indonesian	islands and archipelagos in	On open sandy sediments,
coasts with	archipelago.	tropical seas are surrounded	unencumbered with reefs,
relatively minor		by reduced Model 7	very high densities of filter-
river discharges.		ecosystems, of which the	feeding crabs (<i>Pinnixa</i> ,
		dominant characteristic is the	Xenophthalmus) are typical,
		development of coral reefs	together with other organisms,
		where topography permits,	especially filter-feeding clams.

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		elsewhere unconsolidated	Fish fauna is also diverse,
		sediments are dominated by	both taxonomically and
		carbonate sand.	functionally.
		There is weak seasonality in	Parrot-fish (Scaridae) are
		mixed layer depth, and	among the most important
		nutrient cline is usually	herbivores, directly
		shallower than the photic	consuming coralline and other
		depth, except during	algal mats, and these may
		exceptional events.	form a large-fraction of total
		Most primary production	fish biomass.
		occurs in the benthos.	An intense and complex
		Macroalgae (Sargassum),	network of trophic links

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		encrusting coralline green	between fish and benthic
		(Halimedia) and red algae,	invertebrates is characteristic
		cyanophyte mats and sea-	of this ecosystem. This trophic
		grass meadows dominate	complex supports a wide
		community production, in	variety of large predators.
		addition to the activity of	
		symbiotic dinoflagellates	
		within the tissues of many	
		invertebrates: scleractinian	
		corals, giant clams (<i>Tridacna</i>),	
		coelenterates (alcyonians,	
		anthozoans, and	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		scyphozoans), large ascidians	
		and encrusting sponges.	
		Nutrient sources and fluxes	
		are various: advection,	
		upwelling, vertical flux in	
		fractured basement rocks,	
		some terrestrial runoff.	
		Nitrogen-fixing bacteria occur	
		in the tissues of some corals,	
		and cyanobacteria fix nitrogen	
		within algal mats. Internal	
		exchanges of nutrients within	

Model	Geographic location	Primary and secondary	Higher trophic levels
		production	
		and between organisms is	
		highly complex. Export from	
		the benthic ecosystem, except	
		in the form of carbonate	
		eroded to sand and gravel	
		factions, is a small but	
		complex flux.	
		Water clarity is high, and	
		phytoplankton is dominated	
		by the pico- and nano-	
		fractions, as in oligotrophic	
		ocean ecosystems. These are	

Model	Geographic location	Primary and secondary production	Higher trophic levels
		consumed by protists and small zooplankters themselves the prey of many filter- and tentacular-feeding polyps of corals and other coelenterates.	

