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Introduction

In previous chapters, you learned how to use multiple linear regression to make pre-
dictions about a ratio-level dependent variable. In this chapter, you will learn how 
regression can be used to make predictions about a dichotomous dependent variable. 
Recall that dichotomous variables have only two values—“1” and “0”. Because they 
have only two values, dichotomous variables are sometimes called binary variables. 
The type of regression that is used with dichotomous dependent variables is called 
logistic regression, or binary logistic regression. This chapter describes the concepts 
that underlie logistic regression and explains how to interpret logistic regression re-
sults. Since many things that social science researchers want to make predictions 
about cannot be captured in ratio-level variables, logistic regression is widely used 
and logistic regression results regularly appear in published reports and articles.

This research focus of this chapter is food security and insecurity. The Univer-
sal Declaration of Human Rights enshrines the “right to food” as a basic human 
right (Article 25). The concept of food security expands on the basic “right to food” 
by incorporating the idea of consistent access to appropriate food. The United 
Nations Food and Agriculture Organization (UNFAO) defines food security as “a 
situation that exists when people [have] secure access to sufficient amounts of safe 
and nutritious food for normal growth and development and an active, healthy 
life” (2001). Health Canada measures food security by asking people whether they 
can afford enough food to eat balanced meals, to maintain their body weight, and 
to avoid skipping meals or being hungry. (See the “Spotlight on Data” box in this 
chapter for more information.) 

logistic regression  A type of re-
gression used to make predictions 
about a dichotomous dependent 
variable.

15
Logistic Regression Basics

Learning Objectives

In this chapter, you will learn:

•	 What a logistic regression is

•	 What odds are and how they are calculated

•	 What an odds ratio is and how to interpret it

•	 How to calculate a predicted probability

•	 How to interpret Nagelkerke’s R2 
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Like many industrialized countries, Canada has struggled to develop a coher-
ent food policy (MacRae 2012). Over the past several decades, the federal govern-
ment has begun work on several food-related initiatives, including a national food 
strategy in 1977–78, an “Action Plan for Food Security” in 1998, and a “National 
Food Policy Framework” in 2005; however, all were either abandoned or left incom-
plete (MacRae 2012). Most recently, in 2017, the federal Department of Agriculture 
and Agri-Food initiated a series of consultations with stakeholders and the public 
oriented towards developing “A Food Policy for Canada,” with the support of sev-
eral other federal departments and agencies. 

The rate of food insecurity in Canada has remained stable since 2007: about 
5 per cent of children and 8 per cent of adults live in food-insecure households 
(Roshanafshar and Hawkins 2015). In Canada, geography is strongly related to 
food security. For example, the high cost of transportation and storage can make 
food prices in rural and northern communities prohibitively high and access to 
fresh foods, difficult. Nunavut has the highest rate of food insecurity in Canada, 
where more than one in three households (37 per cent) are unable to access to the 
variety or quantity of food that they need due to lack of money (Roshanafshar and 
Hawkins 2015). Some food-insecure households rely on food banks to bridge the 
gap, but they often do not receive enough support to meet their nutritional needs 
(Tarasuk, Dachner, and Loopstra 2014). Food insecurity can have profound nega-
tive effects on people’s everyday lives and experiences. As a result, people who are 
food insecure tend to have poorer physical and mental health than those who are 
food secure (Vozoris and Tarasuk 2003). 

Photo 15.1  Some food-insecure households turn to food banks for help. Food bank 
use in Canada has been at record levels since 2008 (Food Banks Canada 2015).
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In this chapter, statistical analysis is used to discover the following: 

•	 How are age, gender, personal income, and region of residence related to 
food insecurity? 

•	 How does the probability of being food insecure change in relation to 
people’s income?

•	 How does the probability of being food insecure change in relation to 
people’s age?

The Canadian Community Health Survey  
(Annual Component)

The analyses in this chapter use data from the 2012 Canadian Community Health 
Survey (CCHS), which was described in Chapter 7. The purpose of the CCHS is to 
support health monitoring and surveillance programs and to inform health policy 
at the municipal, provincial, and national levels. Although the CCHS collects data 
continuously, the questions about food security are sometimes optional and, 
thus, only asked in some provinces and territories. The 2012 CCHS was the last 
time that the food security questions were mandatory, and information was col-
lected from people in all provinces and territories. In 2012, the overall response 
rate for the main component of the CCHS was 67 per cent; overall, 61,707 people 
completed the survey (Statistics Canada 2013). Only people aged 15 and older 
are included in the analyses in this chapter; they are considered adults for the 
purpose of assessing food security.

Statistics Canada relies on the definition of food security established by 
Health Canada. Households that are food insecure are ones that, in the past 
year, were “uncertain of having, or unable to acquire, enough food to meet the 
needs of all their members because they had insufficient money for food.” Food-
insecure households are divided conceptually into those that are moderately 
food insecure, that is, they had to compromise in the quality and/or quantity 
of food consumed, and those that are severely food insecure, that is, they had 
reduced food intake and disrupted eating patterns (Health Canada 2012). 

The food security of adults in Canada is assessed by asking respondents 
whether any of the following occurred during the past year:

•• You and other household members worried food would run out before 
you got money to buy more.

•• The food you and other household members bought just didn’t last and 
there wasn’t any money to get more.

Spotlight on Data

Continued
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•• You and other household members couldn’t afford to eat balanced meals.
•• You or other adults in your household cut the size of meals or skipped 

meals because there wasn’t enough money to buy food.
•• You (personally) ate less than you felt you should because there wasn’t 

enough money to buy food.
•• You (personally) were hungry but did not eat because you couldn’t 

afford enough food.
•• You (personally) lost weight because you didn’t have enough money 

for food.
•• You or other adults in your household did not eat for a whole day be-

cause there wasn’t enough money to buy food.

Adults who answered that this was “often” or “sometimes” true, or that it 
occurred in three or more months, for two to five items in this list are considered 
to be moderately food insecure. Adults who gave these answers for six or more 
items in this list are considered to be severely food insecure. 

Understanding the Conceptual Framework  
of Logistic Regression
Although linear regression is useful for making predictions about ratio-level de-
pendent variables, social science researchers regularly study things that are cap-
tured in dichotomous variables. For instance, researchers might be interested in 
predicting whether or not people are unemployed, whether or not they have a stu-
dent loan, or whether or not they voted in the last election. 

Theoretically, linear regression can be used to find the straight line that best 
fits the pattern of the relationship between a ratio-level independent variable and 
a dichotomous dependent variable. In this situation, the line of best fit might look 
something like the dotted line in Figure 15.1. As with any other linear regression, 
the line of best fit is the one that minimizes the sum of the squared distances be-
tween each case and the line. 

Although it is technically possible to use this approach, the results are prob-
lematic for several reasons. First, the line of best fit predicts values on the dependent 
variable (y) that are above “1” or below “0”. If researchers want to predict whether or 
not people voted in the last election, predicting values above “yes” or values below 
“no” doesn’t make sense. Second, the line of best fit predicts values in between “0” 
and “1”, which aren’t legitimate attributes. Because of this, the unstandardized 
slope coefficient of the independent variable (x) isn’t particularly meaningful. For 
example, the regression line in Figure 15.1 shows that every one-unit increase in the 
independent variable is associated with a 0.02 increase in the dependent variable. 

Statisticians work around both of these problems by transforming dichot-
omous dependent variables before using them in regressions. In Chapter 14, you 
learned that when a variable is transformed, the values on the original variable 
are replaced with values that are a mathematical function of the original value. In 
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this section, you’ll learn how dichotomous dependent variables can be transformed 
mathematically so that they range from negative infinity to positive infinity. This 
transformation allows researchers to continue using the same general approach as 
they use in linear regression to make predictions about a dichotomous dependent 
variable—although the transformation of the dependent variable changes the in-
terpretation of the regression coefficients. 

The mathematical transformation of the dichotomous dependent variable in 
a logistic regression has three steps, which I’ll describe in sequence. The first step 
represents an important conceptual shift: instead of trying to predict the value on 
the dependent variable, researchers try to predict the probability that a case will 
have the value “1” on the dependent variable. In the context of logistic regression, 
researchers usually construct the dependent variable so that having a “1” value 
indicates the presence or occurrence of the thing they are interested in (e.g., un-
employment, student debt, voting). In the analyses in this chapter, the value “1” 
on the dependent variable indicates that a person is food insecure. This first step 
in the transformation of the dependent variable makes it sensible to predict values 
between “0” and “1”. Whereas a dichotomous variable has only two possible values 
(“0” or “1”), probabilities range from 0 to 1, with an infinite number of possible 
values between these two endpoints (0.2, 0.435, 0.58976, and so on). (See Chapter 
5 for a review of probabilities.) So, instead of using the value on an independent 
variable to predict the value on a dependent variable, the value on an independent 
variable is used to predict the probability that the dependent variable has a “1” value.  
In mathematical notation, this is written as:
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Figure 15.1  Using Linear Regression to Predict the Relationship between a  
Ratio-Level Independent Variable and a Dichotomous Dependent Variable
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=y xPr( 1| )i i

The “Pr” indicates that this is a probability. The “|” symbol means “given the 
condition” that is specified after the symbol. So, this equation is read as: the prob-
ability that the value on variable y (the dependent variable) is equal to “1”, given the 
value on variable x (the independent variable) for case i. 

One way to proceed is to simply rework the linear regression prediction equa-
tion so that instead of predicting the values on the dependent variable (ŷ), it pre-
dicts the probabilities that the dependent variable has the value “1”. So, instead of 
using this prediction equation . . .

= +y a bxˆ

. . . researchers could use this prediction equation: 

= = +y a bxPr( ˆ 1)

This is a good first step, since probabilities have an infinite number of legitim-
ate values between 0 and 1. But this approach still predicts probabilities below 0 or 
above 1, which are mathematically impossible. 

Odds and Log Odds 

The second step in transforming a dichotomous dependent variable so that it can be 
used in a regression is to move from probabilities to odds. Odds show the number 
of times something occurs relative to the number of times that it does not occur: 

=odds
number of times something occurs

number of times something does not occur
       

           

Transforming probabilities into odds is useful because odds range from 0 to posi-
tive infinity.

For example, if a course has 12 classes in a semester, and you attend 8 of them, 
that means that you do not attend 4 of them. Your odds of attending class are 8 
divided by 4, or 2 (some people say “2 to 1” odds). A friend who is enrolled in the 
same course attends 6 classes and, therefore, does not attend 6 of them; that per-
son’s odds of attending class are 6 divided by 6, or 1. (Some people say “one to one 
odds” or “even odds.”) 

Odds can also be calculated for probabilities. For probabilities, the odds show 
the probability of something occurring relative to the probability of something not 
occurring:

=odds
probability of something occurring

probability of something not occurring
     

       

For a dichotomous dependent variable, the probability of something not occur-
ring (the denominator in the odds equation) is always equal to 1 minus the prob-
ability of something occuring. This is because there are only two possible values in 

odds  Show the number of times 
that something occurs relative to 
the number of times that it does 
not occur.
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a dichotomous variable, and thus the probability of having either value is equal to 1, 
or 100 per cent. For instance, if there’s a 0.8 probability that a dichotomous variable 
has the value “1” for a specific case, then there’s a 0.2 probability that it has the value 
“0” (1 − 0.8 = 0.2). Similarly, if there’s a 0.3 probability that a dichotomous variable 
has the value “1” for a specific case, there’s a 0.7 probability that it has the value “0” 
(1 − 0.3 = 0.7). So, for the probability that a dichotomous dependent variable has the 
value “1”, the odds can be written as:

( )
( )=

=
− =

odds
y x

y x

Pr 1|

1 Pr 1|
i i

i i

This equation is a bit unwieldy, so researchers often just use pi to denote the 
probability that the value on y is equal to “1”, given the value on x for that case. With 
this substitution, the odds are written as:

=
−

odds
p

p1
i

i

odds

Let’s look at what happens when probabilities are transformed into odds. Re-
member that probabilities range from 0 to 1. The first column of Table 15.1 shows 
probabilities ranging from 0.01 to 0.99. The second and third columns of Table 15.1 
show how each probability is transformed into odds. For a probability of 0, when 
something is guaranteed to not occur, the odds are also 0 (or 0 ÷ 100). For probabil-
ities below 0.5, the odds are below 1 (i.e., something is unlikely to occur). A prob-
ability of 0.5 corresponds to an odds of 1, or even odds. For probabilities above 0.5, 
the odds are greater than 1 (i.e., something is likely to occur). And, in theory, a 
probability of 1, when something is guaranteed to occur, corresponds to an odds of 
positive infinity (or 100 ÷ 0). (Any number divided by 0 is equal to infinity.) 

When the probability that a dichotomous dependent variable has the value “1” 
is transformed into odds, the values on the dependent variable can potentially range 
from “0” to positive infinity. But since regression also predicts values on the de-
pendent variable that are below “0”, one more step is needed in the transformation. 

The third and final step in transforming a dichotomous dependent variable so 
that it can be used in a regression is a log transformation, which you learned about 
in Chapter 14. Recall that a log transformation represents a number (the odds) as the 
exponent of a common base number. When a variable is log-transformed, values less 
than “1” in the original variable become negative values in the transformed variable, 
the value “0” in the original variable becomes the value “1” in the transformed variable, 
and values greater than “1” in the original variable become positive values in the trans-
formed variable. In Chapter 14, I described base 2 and base 10 log transformations.

In the natural sciences and mathematics, researchers often transform values 
using the natural log (or natural logarithm). A natural log transformation is just 
like a base 2 or a base 10 log transformation, only the number 2.71828 . . . is used 
as the common base number. The number 2.71828 . . . is called Euler’s constant, 
after mathematician Leonhard Euler, and is denoted using the letter e. As with pi 

natural log (loge)  A logarithmic  
transformation using Euler’s 
constant e (2.71828 . . .) as the 
common base number.
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(π, 3.14159 . . .), the decimals of e continue on forever, and so 2.71828 . . . is only an 
approximate value. Natural log transformations have many mathematical proper-
ties that are particularly useful in statistical analysis, which is why they are some-
times used instead of log transformations with a more intuitive base number. 

Table 15.2 illustrates what happens when odds are log-transformed using the 
common base e. When odds are transformed into the natural log (loge) of the odds, 
they are called log odds. After the natural log transformation, shown in the final 
column of Table 15.2, the values now include both positive and negative numbers. 
When there is less than a 0.5 probability of something occurring (i.e., it is unlikely 
to occur), the log odds are negative. When there is exactly a 0.5 probability of some-
thing occurring (i.e., even odds), the log odds are 0. And, when there is more than 
a 0.5 probability of something occurring (i.e., it is likely to occur), the log odds are 
positive. Theoretically, log odds range from negative infinity to positive infinity.

log odds  The natural log of the 
odds of something occurring.

Table 15.1   Transforming Probabilities into Odds

Probability of   
Something  
Occurring

pi     =1 – pi

Odds of   
Something  
Occurring

0.01
0.01 =
0.99

0.01

0.05
0.05 =
0.95

0.05

0.1
0.1 = 
0.9

0.11

0.3
0.3 = 
0.7

0.43

0.5
0.5 =
0.5

1.00

0.7
0.7 =
0.3

2.33

0.9
0.9 = 
0.1

9.00

0.95
0.95 = 
0.05

19.00

0.99
0.99 = 
0.01

99.00
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The notation that mathematicians use to indicate the process of finding the 
natural log of a number is ln. The ln function on a spreadsheet or calculator will 
show you that the natural log of 99 is 4.60 because 99 is equal to e4.60. Similarly, 
the natural log of 19 is 2.94 because 19 is equal to e2.94. So, the equation for the 
log odds is written as:

log odds=
−







log odds ln

p
p1

i

i

Since the log odds range from negative infinity to positive infinity, the log odds 
of a dichotomous dependent variable can be substituted into a linear regression 
prediction equation without any problems. To review, the original dichotomous 

Table 15.2  Transforming Probabilities into Log Odds

Probability of   
Something 
Occurring

pi     = Odds
1 – pi Odds = e?

Natural Log 
(loge) of the Odds 

of Something 
Occurring

0.01 0.01 = 0.01
0.99

0.01 = e–4.60 −4.60

0.05 0.05 = 0.05
0.95

0.05 = e–2.94 −2.94

0.1 0.1 = 0.11
0.9

0.11 = e–2.20 −2.20

0.3 0.3 = 0.43
0.7

0.43 = e–0.85 −0.85

0.5 0.5 = 1
0.5

	 1 = e0 0.00

0.7 0.7 = 2.33
0.3

2.33 = e0.85 0.85

0.9 0.9 = 9
0.1

	 9 = e2.20 2.20

0.95 0.95 = 19
0.05

	 19 = e2.94 2.94

0.99 0.99 = 99
0.01

	 99 = e4.60 4.60
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dependent variable is transformed so it can be used as the dependent variable in a 
regression in three steps: 

1.	 First, the focus shifts to the probability that something will occur (y = 1). 
2.	 Then, the probability is transformed into the odds that something will occur. 
3.	 Finally, the odds are transformed into the log odds that something will occur. 

The final, transformed variable is used as the dependent variable in a logistic re-
gression prediction equation that is functionally equivalent to a linear regression 
prediction equation. This is the logistic regression prediction equation when only 
one independent variable is used: 

logistic regression 
predictions (one 
independent variable) −







= +ln
p

p
a bx

ˆ
1 ˆ

Although logistic regression uses an approach that is similar to linear regres-
sion, there are several important differences between them: 

•	 First, logistic regression is a type of non-linear regression. In Chapter 14, 
you learned about the difference between linear and non-linear transform-
ations, and you learned that log transformations are non-linear. Because 
logistic regression incorporates a log transformation of the dependent 
variable, it does not predict a straight-line relationship between variables. 

•	 Second, because of the transformation of the dependent variable, it’s not 
possible to calculate the slope and constant coefficients of a logistic regres-
sion in the same way as for a linear regression. Instead, statistical software 
programs use a process called maximum likelihood estimation to calcu-
late the constant and slope coefficients of a logistic regression. 

•	 Finally, because of the transformation of the dependent variable, the in-
terpretation of the regression coefficients changes. In the next section, I 
describe how to interpret the constant and slope coefficients produced by 
logistic regressions.

Interpreting Logistic Regression Coefficients
To illustrate how logistic regression coefficients are interpreted, let’s return to the 
question of food security. In order to make the explanations in the remainder of 
this chapter easier to understand, I often refer to food insecurity as “going hungry.” 
Overall, about 8 per cent of adults in Canada—or about 2.2 million people—are 
moderately or severely food insecure, that is, they go hungry. To start, let’s use this 
percentage to calculate the odds of going hungry: 

=odds of going hungry
proportion of adults who go hungry

proportion of adults who do not go hungry
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= or
8%

92% 
   

0.08
0.92

= 0.09

Since income is likely related to food security, let’s also calculate the odds of 
going hungry for two separate groups: (1) people who have low income (less than 
$20,000 per year), and (2) people who have higher income ($20,000 or more per 
year). Among people who reported their income, about a third (30 per cent) have 
an annual income of less than $20,000. Among adults with annual incomes of less 
than $20,000, 15 per cent went hungry and 85 per cent did not go hungry. So, the 
odds of going hungry for people who have low income are calculated as: 

=

=

=

odds of going hungry

proportion of low income
adults who go hungry

proportion of low income
adults who do not go hungry

odds of going hungry or

     

   
     

   
         

     
15%
85%

   
0.15
0.85

0.176

low income

low income

 

 

Among adults with an annual income of $20,000 or more, 5 per cent went hungry 
and 95 per cent did not go hungry. So, the odds of going hungry for people who 
have higher incomes are:

=

=

=

odds of going hungry

proportion of higher income
adults who go hungry

proportion of higher income
adults who do not go hungry

odds of going hungry or

     

   
     
   

         

     
5%

95% 
   

0.05
0.95

0.053

higher income

higher income

 

 

In order to interpret logistic regression slope coefficients, it’s crucial to under-
stand the idea of an odds ratio. In Chapter 2 you learned about ratios, which show 
how the frequencies of two attributes compare directly to each other. Similarly, 
odds ratios show how the odds of something occurring in two different groups 
compare directly to each other. The odds of something occurring in the first group 
are expressed as a ratio of the odds of that same thing occurring in the second 
group. Just like odds, odds ratios range from 0 to infinity. 

By using odds ratios, researchers can make fair comparisons between 
groups. For example, the odds of people with low income going hungry can be 
compared to the odds of people with higher income going hungry using the fol-
lowing ratio: 

=odds ratio
odds of low income adults going hungry

odds of higher income adults going hungry
 

           
           

odds ratio  Compares the odds of 
something occurring in two differ-
ent groups; the odds of something 
occurring in the first group are ex-
pressed as a ratio of the odds of 
that thing occurring in the second 
group.
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=odds ratio 
0.176
0.053

= 3.32

An odds ratio of 1 indicates that the two groups have exactly the same odds 
of something occurring. An odds ratio greater than 1 indicates that the odds of 
something occurring for the group shown in the numerator of the ratio are higher 
than the odds of that thing occurring for the group shown in the denominator. An 
odds ratio less than 1 indicates that the odds of something occurring for the group 
shown in the numerator of the ratio are lower than the odds of that thing occurring 
for the group shown in the denominator. So, the odds ratio of 3.32 indicates that 
low income adults have higher odds of going hungry than higher income adults. 

Researchers usually report how much higher (or lower) the odds of something 
occurring are for a specific group using percentages. Using percentages to report 
differences in odds makes sense because odds are non-linear. It’s easiest to interpret 
odds ratios using a two-step process: 

1.	 First, subtract 1 from the odds ratio. This accounts for the fact that an odds ratio 
of 1 indicates that both groups have the same odds of the thing occurring. 

2.	 Second, multiply the remaining number by 100, in order to show the percentage 
difference in the odds. 

Table 15.3 illustrates these two steps and how to interpret various odds ratios. 
The interpretation of odds ratios are typically framed as claims about how the 
odds of the group shown in the numerator of the ratio compare to the odds of 
the group shown in the denominator of the ratio. For instance, an odds ratio of 
0.25 indicates that the group shown in the ratio’s numerator has 75 per cent lower 
odds of something occurring than the group shown in the ratio’s denominator. An 
odds ratio of 2.25 indicates that the group shown in the ratio’s numerator has 125 
per cent higher odds of something occurring than the group shown in the ratio’s 
denominator. 

Table 15.3  Interpreting Odds Ratios

Odds 
Ratio Odds Ratio − 1

Percentage Difference 
in the Odds

Interpretation 
“The group in the numerator has _________  

than the group in the denominator.”(OR) (OR − 1) (OR − 1) (100)

0.25 0.25 – 1 = −0.75 −75% 75 per cent lower odds of something occurring

0.50 0.50 − 1 = −0.50 −50% 50 per cent lower odds of something occurring

1.00 1.00 – 1 = 0 0% Equal odds of something occurring

1.25 1.25 – 1 = 0.25 +25% 25 per cent higher odds of something occurring

1.50 1.50 – 1 = 0.50 +50% 50 per cent higher odds of something occurring

2.00 2.00 – 1 = 1.00 +100% 100 per cent higher odds of something occurring

2.25 2.25 – 1 = 1.25 +125% 125 per cent higher odds of something occurring
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When the odds of adults with low income going hungry are compared to the 
odds of adults with higher income going hungry, the odds ratio is 3.32. As a result, 
we can assert that adults with low income have 232 per cent higher odds of going 
hungry than adults with higher income. I calculated this difference by subtracting 
1 from 3.32 to get 2.32, and then multiplying by 100 to find the percentage differ-
ence (2.32 × 100 = 232 per cent difference). 

Now that you understand the idea of an odds ratio, let’s look at how they relate 
to logistic regression coefficients. Earlier in this chapter, you learned that in logistic 
regression the dichotomous dependent variable is transformed so that it captures 
the log odds of the probability that something will occur. Although this math-
ematical manipulation is useful for allowing researchers to use an approach that 
is similar to linear regression to make predictions about a dichotomous dependent 
variable, it makes the slope coefficients hard to interpret because they are expressed 
in log odds. For example, Table 15.4 shows the results of a logistic regression that 
uses low-income status, as a dummy variable, to predict whether or not people go 
hungry. As in a linear regression, the slope coefficient of the dummy variable shows 
how people who are in that group compare to people in the reference group. In this 
example, the slope coefficient of the “Has low income” dummy variable indicates 
that people with low income are predicted to have a log odds of going hungry that 
is 1.203 higher than people who do not have low income. The constant coefficient 
shows the prediction for people who have “0” values on all of the independent vari-
ables. In this example, the constant coefficient indicates that people who do not 
have low income (i.e., the “Has low income” dummy variable has a “0” value) are 
predicted to have a log odds of going hungry of −2.951. Although these results are 
technically correct, they aren’t particularly meaningful. 

To make logistic regression coefficients easier to interpret, researchers reverse 
the process of finding the natural log in order to turn the results back into odds. This 
is called finding the natural exponent of a number (exp or ex). Finding the natural 
exponent of the log odds shown in the fourth column of Table 15.2 (using the exp or 
ex function on a spreadsheet or calculator) transforms them back into the odds in the 
second column. So, the natural exponent of 4.60 is equal to 99 because e4.60 is equal 
to 99. Similarly, the natural exponent of 2.94 is equal to 19 because e2.94 is equal to 19. 

In practice, the natural exponents of logistic regression slope coefficients 
are odds ratios. That is, they show how the odds of something occurring for the 
group captured in an independent dummy variable are predicted to compare to 

Table 15.4  Results of a Logistic Regression with a Dummy Variable  
as an Independent Variable 

Dependent variable: Is food insecure? (n = 48,787)

Unstandardized 
Coefficient 

Has low income (less than $20,000 a year) 1.203*

Constant −2.951*

*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2014.
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the odds of the same thing occurring for the reference group. Table 15.5 shows the 
same regression results as Table 15.4, but adds another column—labelled Odds 
Ratio—that shows the natural exponents of the unstandardized coefficients from 
Table 15.4. The odds ratio of the “Has low income” dummy variable is 3.33 because 
e1.203 is equal to 3.33. So, these logistic regression results show that people with 
low income are predicted to have 233 per cent higher odds of going hungry than 
people with higher incomes (since 3.33 – 1 = 2.33, or 233 per cent). Notice that this 
matches the odds ratio calculated earlier in this chapter that compares the odds 
of adults with low income going hungry to the odds of adults with higher income 
going hungry. (That odds ratio was 3.32; the slight difference is due to rounding; 
the odds ratio calculated using percentages is equivalent to the odds ratio from 
this logistic regression because low-income status is the only independent vari-
able used in the regression.)

If the odds ratio of a dummy variable is higher than 1, then the group captured 
in the dummy variable is predicted to be more likely than the reference group to 
have something occur. If the odds ratio of a dummy variable is exactly 1, then the 
group captured in the dummy variable is predicted to be just as likely as the refer-
ence group to have something occur. If the odds ratio of a dummy variable is lower 
than 1, then the group captured in the dummy variable is predicted to be less likely 
than the reference group to have something occur. 

The interpretation of logistic regression constant coefficients is slightly differ-
ent than the interpretation of logistic regression slope coefficients. Researchers still 
reverse the process of finding the natural log, and find the natural exponent of the 
unstandardized constant coefficient. But, for the constant coefficient, the result is 
just the odds—and not an odds ratio as it is for the slope coefficients. So, despite the 
column label, the value in the Odds Ratio column for the constant shows the odds 
of going hungry for people who have a “0” value on all of the independent variables. 
In Table 15.5, the constant coefficient of 0.05 shows that for higher income people 
(who have a “0” value on the “Has low income” dummy variable), the predicted 
odds of going hungry are 0.05. Notice that this also matches the odds of going 
hungry that we calculated for higher income adults (0.053) earlier in this chapter. 
(Again, the odds calculated using percentages are equivalent to the odds from this 
logistic regression because low-income status is the only independent variable used 
in the regression.) 

Table 15.5  Results of a Logistic Regression with a Dummy Variable  
as an Independent Variable, with Odds Ratios

Dependent variable: Is food insecure? (n = 48,787)

Unstandardized 
Coefficient 

Odds 
Ratio

Has low income (less than $20,000 a year) 1.203* 3.33

Constant −2.951*  0.05

*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2014.
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Up to this point, I have discussed odds ratios only for categorical independent 
variables because they are intuitively easier to understand. But ratio-level variables 
can also be used as independent variables in logistic regressions. Table 15.6 shows 
the results of a logistic regression that uses a ratio-level “Age” variable to predict 
whether people are likely to go hungry. Similar to linear regression, in a logistic 
regression the slope coefficient of a ratio-level independent variable shows how a 
one-unit increase in the independent variable is predicted to be associated with the 
dependent variable. In the logistic regression results shown in Table 15.6, the odds 
ratio of the “Age” variable is below 1, so as age increases, the odds of going hungry are 
predicted to be lower. Specifically, for each additional year older that people are, they 
are predicted to have 2 per cent lower odds of going hungry (since 0.98 – 1 = −0.02,  
or −2 per cent). 

Because the “Age” variable used in this logistic regression is not centred, the 
constant shows the odds of going hungry for people who are 0 years old; thus, it 
makes little sense to discuss this result. Most of the time, researchers do not discuss 
the odds of the constant coefficient when they report the results of a logistic regres-
sion. This is also why many statistical software programs print the constant at the 
bottom of logistic regression results. 

The two logistic regressions I have shown so far have only used a single in-
dependent variable. But the main advantage of using regression—including logistic 
regression—is the ability to predict the unique relationship between an independ-
ent variable and a dependent variable while controlling for a series of other vari-
ables. For instance, the odds of going hungry are likely related to other things 
besides income, and a more complex logistic regression model can help to identify 
which characteristics are the strongest predictors of food insecurity. 

Table 15.7 shows the results of a logistic regression that uses age, sex/gender, 
annual personal income, and region of residence to predict the relative odds of 
going hungry. The annual personal income dummy variables now capture four 
levels of income, instead of just distinguishing between people who have low 
income and those who do not. The odds ratios show how people’s income is related 
to their odds of going hungry. Compared to people with annual incomes of $80,000 
or more, people with annual incomes of less than $20,000 are predicted to have 
2,229 per cent higher odds of going hungry, people with annual incomes of $20,000 
to $39,999 are predicted to have 1,252 per cent higher odds of going hungry, people 

Table 15.6  Results of a Logistic Regression with a Ratio-Level Independent 
Variable, with Odds Ratios 

Dependent variable: Is food insecure? (n = 48,787)

Unstandardized 
Coefficient Odds Ratio

Age (in years) −0.020* 0.98

Constant −1.589* 0.20

*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2014.
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with annual incomes of $40,000 to $59,999 are predicted to have 575 per cent higher 
odds of going hungry, and people with annual incomes of $60,000 to $79,999 are 
predicted to have 184 per cent higher odds of going hungry, after controlling for 
region of residence, age, and sex/gender. 

The estimated odds of going hungry also vary depending on where people live in 
Canada. Compared to people who live in Ontario, people living in Atlantic Canada 
are predicted to have 24 per cent higher odds of going hungry, people living in the 
Prairies are predicted to have 11 per cent higher odds of going hungry, and people 
living in British Columbia and the three territories are predicted to have 15 per cent 
higher odds of going hungry, after controlling for annual personal income, age, and 
sex/gender. (The three territories are grouped with British Columbia because there 
are few cases from the territories.) Age appears to have a weaker relationship with 
the odds of going hungry. After controlling for annual personal income, region of 
residence, and sex/gender, each one-year increase in age is associated with having 
only 1 per cent lower odds of going hungry. 

The logistic regression shown in Table 15.7 begins to introduce more variables 
into the examination of adults’ food insecurity. As with linear regression, research-
ers strive to build logistic regression models that capture the wide range of char-
acteristics and social processes that might be related to a dependent variable. The 
techniques for manipulating independent variables that you learned about in Chap-
ter 14—interactions, quadratics, and transformations—can also be used in logistic 
regressions, although interpreting the coefficients becomes increasingly complex. 

Table 15.7  Results of a Logistic Regression, with Odds Ratios

Dependent variable: Is food insecure? (n = 48,787)

Unstandardized 
Coefficient 

Odds 
Ratio

Annual personal income (ref: $80,000 or more)

	 Less than $20,000 3.148* 23.29

	 $20,000 to $39,999 2.604* 13.52

	 $40,000 to $59,999 1.909* 6.75

	 $60,000 to $79,999 1.042* 2.84

Region of residence (ref: Ontario)

	 Atlantic Canada 0.213* 1.24

	 Quebec 0.059 1.06

	 Prairies 0.106* 1.11

	 British Columbia & the Territories 0.136* 1.15

Age (in years) −0.014* 0.99

Women −0.014 0.99

Constant −4.386* 0.01

*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2014.
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Standardized Slope Coefficients 

So far, none of the logistic regression results have included standardized slope co-
efficients. Although some statistical software programs produce standardized slope 
coefficients for logistic regressions, others (such as SPSS) do not. As you learned in 
Chapter 12, though, a standardized slope coefficient can be calculated using the 
unstandardized slope coefficient and the standard deviations of both the independ-
ent and dependent variables. Recall that the formula for calculating a standardized 
slope coefficient is:

β =








b

s
sx x

x

y

This same formula can be used to calculate standardized slope coefficients for 
logistic regressions, using the predicted difference in the log odds (shown in the 
“Unstandardized Coefficient” [b] column) and the standard deviations of the in-
dependent and dependent variables. Table 15.8 shows the standardized slope coeffi-
cients of the independent variables used in the logistic regression in Table 15.7. The 
standard deviation of the dependent variable and each of the independent variables 
was obtained using statistical software, and then used to calculate each of the stan-
dardized slope coefficients. 

Table 15.8  Standardized Slope Coefficients for the Logistic Regression Shown in Table 15.7

Dependent variable: Is food insecure? (n = 48,787)

Unstandardized 
Coefficient

(bx )

Standard 
Deviation of the 

Independent 
Variable

(sx)

Standard 
Deviation of the  

Dependent 
Variable

(sy)

Standardized 
Coefficient

(βx)
Annual personal income (ref: 
$80,000 or more)

	 Less than $20,000 3.148* 0.458 0.270 5.35

	 $20,000 to $39,999 2.604* 0.445 0.270 4.30

	 $40,000 to $59,999 1.909* 0.390 0.270 2.76

	 $60,000 to $79,999 1.042* 0.313 0.270 1.21

Region of residence (ref: Ontario)

	 Atlantic Canada 0.213* 0.258 0.270 0.20

	 Quebec 0.059 0.428 0.270 0.09

	 Prairies 0.106* 0.377 0.270 0.15

	 British Columbia & the Territories 0.136* 0.347 0.270 0.18

Age (in years) −0.014* 17.578 0.270 −0.91

Women −0.014 0.500 0.270 −0.03

*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2014.
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The standardized slope coefficients of logistic regressions are interpreted in the 
same way as those of linear regressions. Because the units of measurement aren’t 
easily interpretable, researchers typically just identify the independent variable 
with the highest absolute standardized slope coefficient (regardless of whether it is 
positive or negative) as that which has the strongest relationship with the depend-
ent variable. Similarly, researchers can identify the independent variable with the 
lowest absolute standardized slope coefficient as that which has the weakest rela-
tionship with the dependent variable. In this example, the annual personal income 
dummy variables (collectively) have the highest standardized slope coefficients. 
Thus, among the independent variables in this logistic regression, annual personal 
income has the strongest relationship with food insecurity. The “Women” dummy 
variable has the smallest standardized slope coefficient; thus, among the independ-
ent variables in this logistic regression, sex/gender has the weakest relationship 
with food insecurity. 

Statistical Significance Tests and Confidence Intervals 

As you might expect, researchers are also interested in assessing the reliability, or 
statistical significance, of logistic regression results. Logistic regression relies on a 
version of a chi-square test of statistical significance, called a Wald chi-square, to 
assess the likelihood of randomly selecting a sample with the observed relation-
ship, or one of greater magnitude, if no relationship exists between an independent 
variable and the dependent variable in the larger population. In the context of 
logistic regression, significance tests show the likelihood of randomly selecting 
a sample with the observed log odds (or larger log odds), if the log odds of the 
relationship between an independent variable and the dependent variable are ac-
tually 0 (corresponding to a probability of 0.5 or odds of 1) in the population. The 
p-values produced by the Wald chi-square test are interpreted in the same way as 
all other p-values. 

Notice that I did not discuss the odds ratios of the “Quebec” dummy variable 
in the description of the logistic regression results in Table 15.7. Since the unstan-
dardized slope coefficient of the “Quebec” dummy variable is not statistically sig-
nificant (it has a p-value greater than 0.05), we are not confident that adults in the 
Quebec population have different odds of going hungry than adults in the Ontario 
population (the reference group), after controlling for the other variables in the 
regression. Similarly, since the unstandardized slope coefficient of the “Women” 
dummy variable is not statistically significant, we are not confident that—in the 
Canadian population—the odds of women of going hungry are any different than 
the odds of men of going hungry, after controlling for annual personal income, 
region of residence, and age. 

Similar to linear regression, researchers sometimes present the 95 per cent con-
fidence intervals for logistic regression coefficients. Typically, researchers present 
the confidence intervals for the odds ratio of each independent variable, as opposed 
to the confidence intervals for the log odds. The 95 per cent confidence interval 
for an odds ratio shows the range that the odds ratio capturing each relationship 
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is likely to be within in the population that the sample was selected from, with 
95 per cent confidence. If the 95 per cent confidence interval for the odds ratio of 
a categorical independent variable (a dummy variable) overlaps with 1, researchers 
cannot be confident that, in the population, the group captured in the dummy vari-
able has different odds of the outcome captured in the dependent variable than the 
reference group. Similarly, if the 95 per cent confidence interval for the odds ratio of 
a ratio-level independent variable overlaps with 1, researchers cannot be confident 
that, in the population, a one-unit increase in the independent variable is associated 
with any change in the odds of the outcome captured in the dependent variable.  

Table 15.9 shows 95 per cent confidence intervals for the odds ratios of the 
independent variables used in the logistic regression shown in Table 15.7. The 95 
per cent confidence intervals for the odds ratios are used to illustrate the amount 
of uncertainty in researchers’ estimates; this uncertainty is the result of using in-
formation from a random sample of cases to make predictions, instead of using 
information from the entire population. For instance, researchers can assert that 
they are 95 per cent confident that the odds of going hungry in the adult population 
of Atlantic Canada are somewhere between 9 to 41 per cent higher than the odds 
of going hungry in the Ontario adult population. Alternatively, a researcher might 
report that the odds of going hungry in the adult population of British Columbia 
and the Territories are 15 per cent higher (95% CI: 3%−27%) than the odds of going 
hungry in the Ontario adult population. 

Table 15.9  Results of a Logistic Regression, with Odds Ratios and 95 Per Cent Confidence Intervals 

 Dependent variable: Is food insecure? (n = 48,787)

Unstandardized 
Coefficient

Odds
Ratio

95% Confidence Interval  
for the Odds Ratio

Lower Bound Upper Bound

Annual personal income (ref: $80,000 or more)

	 Less than $20,000 3.148* 23.29 17.24 31.47

	 $20,000 to $39,999 2.604* 13.52 9.99 18.30

	 $40,000 to $59,999 1.909* 6.75 4.94 9.22

	 $60,000 to $79,999 1.042* 2.84 1.99 4.03

Region of residence (ref: Ontario)

	 Atlantic Canada 0.213* 1.24 1.09 1.41

	 Quebec 0.059 1.06 0.97 1.16

	 Prairies 0.106* 1.11 1.00 1.23

	 British Columbia & the Territories 0.136* 1.15 1.03 1.27

Age (in years) −0.014* 0.99 0.98 0.99

Women −0.014 0.99 0.92 1.06

Constant −4.386* 0.01

*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2014.
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Notice that the 95 per cent confidence interval for the “Quebec” dummy vari-
able shows that—in the population of adults—the odds ratio is likely to be between 
0.97 and 1.16. In other words, compared to the Ontario population, the odds of 
going hungry could be 3 per cent lower in the Quebec population or 16 per cent 
higher in the Quebec population (or anywhere in between). Thus, the odds of going 
hungry could plausibly be exactly the same for adults in the Quebec population 
and in the Ontario population. In this example, the 95 per cent confidence interval 
mirrors the results of the statistical significance test, which shows that there is not 
a statistically significant difference between Quebec adults’ odds of going hungry 
and Ontario adults’ odds of going hungry (Ontario is the reference group). The 
upper and lower bounds of the 95 per cent confidence interval for the odds ratio 
of the “Women” dummy variable also overlap with 1, mirroring the results of the 
statistical significance test. Often, when the upper and lower bounds of the 95 per 
cent confidence interval overlap with 1, the result is not statistically significant (but 
not always). In general, the width of the 95 per cent confidence intervals for odds 
ratios provide information about how precise logistic regression predictions are.

Which Low-Income Families Use Food Banks?

Original research: Loopstra, Rachel, and Valerie Tarasuk. 2012. “The Relationship 

between Food Banks and Household Food Insecurity among Low-Income Toronto 

Families.” Canadian Public Policy 38 (4): 497–514. 

Researchers know that many people who are food insecure do not use food 
banks. A team of researchers wanted to find out which low-income families were 
more likely to use food banks and which were less likely to do so (Loopstra and 
Tarasuk 2012). The researchers sampled low-income families from 12 randomly 
selected high-poverty areas in Toronto; in order to be included in the sample, 
families needed to rent their home, have at least one child aged 18 or younger, 
and have enough English-language skills to complete an interview. Information 
was collected from the household member who was primarily responsible for 
shopping and food management. 

The researchers asked respondents whether or not their family had used a 
food bank during the past 12 months. A logistic regression was used to deter-
mine how the odds of food bank use are associated with various household char-
acteristics. The number and percentage of households with each characteristic, 
grouped by whether or not they used a food bank in the past 12 months, are 
shown in the first two columns of Table 15.10. The odds ratios (OR) and 95 per 
cent confidence intervals produced by a logistic regression are shown in the final 
column of Table 15.10. For each household characteristic, the row with an odds 
ratio of 1 (in the final column) indicates the reference group. In addition to the 

Statistics in Use
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Table 15.10  Household Characteristics in Relation to Food Bank Use (N = 371)

Household Characteristics

Did Not Use 
Food Bank
(n = 287)

Used  
Food Bank

(n = 84)
Adjusted ORa

(95% CI)

Food security status, n (%)

Food secure 88 (94) 6 (6) 1.00

Marginally food  
insecure 42 (89) 5 (11) 1.48 (0.30–7.22)

Moderately food 
insecure 89 (75) 29 (25) 3.21 (1.26–8.18)

Severely food insecure 68 (61) 44 (39) 3.75 (1.18–11.90)

12-month incomeb (mean 
± SE) 

28,339 ± 
631.90

20,843 ± 
1,180.78 1.19 (1.11–1.26)c

Received welfare, n (%)

No 209 (89) 25 (11) 1.0

Yes 78 (57) 59 (43) 3.19 (1.52–6.70)

Immigrated ≤ 5 years ago, 
n (%)

No 232 (75) 79 (25) 1.0

Yes 55 (92) 5 (8) 0.37 (0.16–0.85)

Household type, n (%)

Two-parent or lone father 142 (87) 21 (13) 1.0

Lone mother 145 (70) 63 (30) 0.59 (0.25–1.39)

Baseline education of 
respondent, n (%)

Some or completed 
post-secondary 142 (86) 24 (14) 1.0

High school 97 (78) 28 (22) 0.86 (0.29–2.57)

Less than high school 48 (60) 32 (40) 1.33 (0.59–3.01)

Have children ≤ 3 years 
old, n (%)

No 206 (77) 62 (23) 1.0

Yes 81 (79) 22 (21) 0.90 (0.48–1.66)

Notes:
a Logistic regression model adjusted for variables in table, number of adults and children in household, receipt of 

housing subsidy, and clustering effect of neighbourhood.
b Income means adjusted for number of adults and children in household.
c Income OR refers to a $2,000 decrease in income.

Source: Calculated by authors.

Continued

Source: Loopstra and Tarasuk 2012, 503. Reprinted with permission from University of Toronto Press 
(www.utpjournals.com).
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characteristics listed, the regression also controls for the number of adults and 
children living in the household, whether or not the household received a housing 
subsidy, and neighbourhood effects. (See Table 15.10, note [a].)

The researchers assert that “the odds of using a food bank in the past 
12 months . . . increased with the severity of food insecurity” (Loopstra and 
Tarasuk 2012, 501). As households have progressively higher levels of food 
insecurity, the predicted odds ratios increase: from 1.48 for marginally food-
insecure households, to 3.21 for moderately food-insecure households, to 3.75 
for severely food-insecure households (all in comparison to food-secure house-
holds). The logistic regression results also show that the odds of food bank use 
are 16 per cent higher for every $2,000 decrease in household income, adjusted 
for household size. (Note [c] on the table indicates that the odds ratio refers to 
a $2,000 decrease.) Households who receive social assistance (welfare) have 
219 per cent higher odds of using food banks than those who do not. Notably, 
recent immigrants are less likely to use food banks than more settled immi-
grants or the Canadian-born, since the odds ratio of the recent immigrant (“Yes”) 
dummy variable is less than 1. 

The 95 per cent confidence interval for each odds ratio is shown in paren-
theses following the odds ratio. The wide 95 per cent confidence intervals for 
the odds ratios of the household type and education variables make it difficult to 
draw any conclusions about how these characteristics are related to food bank 
use. Similarly, no conclusions can be made about how having a child aged three 
or under in the household is related to food bank use.

Some study participants indicated that they do not use food banks because 
they don’t provide suitable food, they are able to manage without using them, 
they associate food bank use with degrading feelings, or they don’t feel like 
food banks are meant for them. Other participants cited barriers to food bank 
use related to access (such as not being able to go during open hours or not 
being able to document their financial need) and not having enough information 
about them. 

Based on this research, Loopstra and Tarasuk conclude that most food-
insecure families are not using food banks and that, among those families 
who are using food banks, they do not do much to alleviate food insecurity. In 
response, they make a series of policy recommendations for improving both 
access to food banks and the resources that they are able to provide. 

Calculating Predicted Probabilities 
Researchers often use logistic regression results to make claims about how the 
probability that something will occur is different for people with different char-
acteristics. Recall that the probability that something will occur is not the same 
as the odds that something will occur. The first and last columns of Table 15.1 
illustrate the difference between probabilities and odds. Fortunately, the predicted 
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probability that the outcome captured in the dependent variable will occur for a 
specific type of person (or case) can be calculated using unstandardized logistic 
regression coefficients. This process is the equivalent of using the linear regression 
prediction equation to predict the value on the dependent variable for a specific 
type of person (or case). 

Calculating the predicted probability that the outcome captured in the de-
pendent variable will occur for a specific case (using logistic regression coefficients) 
is a two-step process. The first step is to calculate a z-value (which is different than 
a z-score). This step is very similar to calculating a linear regression prediction. 
The type of person (or case) that the prediction is being made for is specified by 
modifying the value on each independent variable in the equation. The formula for 
calculating a z-value should look familiar: 

z-value z a b x b x b x …
1 1 2 2 3 3= + + + +

Notice that the log odds (shown in the “Unstandardized Coefficient” column of 
logistic regression results) are used to calculate the z-value, and not the odds ratios. 

The second step is to use the z-value to calculate the predicted probability of 
the outcome captured in the dependent variable occuring. This additional step 
accounts for the transformations that are made to the dependent variable in a logis-
tic regression. The predicted probability (p̂) is calculated as: 

predicted probability=
+

p
e

e
ˆ

1

z

z

In this formula, e represents Euler’s constant (2.71828 . . .), which was described 
earlier in this chapter. 

Let’s use the logistic regression results in Table 15.5 to calculate the predicted 
probability of going hungry. The regression uses a single categorical independent 
variable: low-income status. The unstandardized constant coefficient (a) is −2.951, 
and the unstandardized slope coefficient (b) is 1.203. These coefficients are substi-
tuted into the z-value formula: 

( )
= +

= − +

z a b x

z low income2.951 1.203  
1 1

For people who do not have low income, the z-value is: 

( )= − +z low income2.951 1.203  
( )= − +2.951 1.203 0

= − 2.951
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For people who do have low income, the z-value is:

( )= − +z low income2.951 1.203  

( )= − +2.951 1.203 1

= −1.748

Let’s proceed to the second step, and substitute each of these z-values into the 
equation to find the predicted probability of going hungry. For people who do not 
have low income, the predicted probability of going hungry is:
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For people who have low income, the predicted probability of going hungry is:
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So, people who do not have low income have a 0.05 probability, or a 5 per cent 
chance, of going hungry; and people who have low income have a 0.15 probability, 
or a 15 per cent chance, of going hungry. Notice that these probabilities correspond 
exactly to the percentage of adults in each group who are food insecure, reported 
earlier in this chapter. This result only occurs when a logistic regression uses a single, 
categorical independent variable. Once logistic regression models become more 
complex, the predicted probabilities no longer correspond to the group percentages 
because the predictions control for the other independent variables in the regression. 

When a logistic regression uses a ratio-level independent variable, researchers 
usually calculate the predicted probabilities for a series of typical values and then 
graph them in order to show the predicted relationship. The logistic regression re-
sults shown in Table 15.6 predict the odds of going hungry, using a ratio-level “Age” 
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variable as the independent variable. The regression coefficients in Table 15.6 are 
substituted into the z-value equation: 

 ( )( )
= +

= − + −

z a b x

z age1.589 0.020
1 1

To better understand the relationship between age and the probability of going 
hungry, a z-value is calculated for people who are aged 15, aged 20, aged 25, and so 
on all the way up to age 80. (The oldest people in the sample are 80.) Then, predicted 
probabilities are calculated for people at each age, and the results are graphed to 
show the general pattern. Figure 15.2 shows that—in general—as age increases, the 
predicted probability of going hungry decreases. Notice that the predicted relation-
ship between age and the probability of going hungry is curvilinear. Earlier in this 
chapter, you learned that logistic regression is a type of non-linear regression, and, 
thus, it does not predict a straight-line relationship. 

This same two-step process of calculating z-values and predicted probabil-
ities can also be used when logistic regressions use more than one independent 
variable. In these situations, however, researchers usually choose only one or two 
variables to highlight, varying the values of those variables while holding the other 
independent variables constant. For instance, the logistic regression shown in Table 
15.7 uses four independent variables (annual personal income, region of residence, 
age, and sex/gender) and has 10 slope coefficients and a constant coefficient. It’s 
simply unwieldy to display the predicted probabilities for every possible combina-
tion of characteristics. Since I am primarily interested in the relationship between 
income and the probability of going hungry, I decided to calculate and plot the pre-
dicted probabilities of going hungry for people in three of the five personal income 
groups: the lowest income group (who have annual incomes of less than $20,000), 
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Figure 15.2  Predicted Probability of Food Insecurity, by Age, Calculated from the 
Logistic Regression Results in Table 15.6

Source: Author generated; Calculated using data from Statistics Canada, 2014.
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the middle income group (who have annual incomes of $40,000 to $59,999), and 
the highest income group (who have annual incomes of $80,000 or more). Since age 
also has a statistically significant slope coefficient, I include predictions for people 
at various ages in each of the three income groups. But to avoid further complexity, 
I only show predictions for people who live in Ontario (since the largest proportion 
of the Canadian population lives in Ontario). Similarly, I only show predictions for 
men because we are not confident that the odds of going hungry are different for 
women than for men. 

Figure 15.3 shows the predicted probability of going hungry for men living in 
Ontario, with three different levels of annual personal income and across a range 
of ages. The graph shows that among men with the highest personal incomes, 
there is a very weak relationship between age and the probability of going hungry. 
Indeed, the probability of going hungry is very low for men of all ages who have 
an annual personal income of $80,000 or more. Men with the lowest personal 
incomes, who have an annual income of less than $20,000, have a much higher 
probability of going hungry overall. In addition, the relationship between age and 
the probability of going hungry is much stronger among men with the lowest 
personal incomes. 

When researchers report the results of logistic regressions, they sometimes 
present the estimated odds ratios; sometimes, predicted probabilities; and other 
times, both. In order to ensure that you understand what logistic regression re-
sults are showing, be sure to note whether odds ratios or probabilities are being 
reported. 

Figure 15.3  Predicted Probability of Food Insecurity for Men Living in Ontario, 
by Age, for Three Annual Personal Income Groups, Calculated from the Logistic 
Regression Results in Table 15.7

Source: Author generated; Calculated using data from Statistics Canada, 2014.
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Z-values

z a b x b x b x …
1 1 2 2 3 3= + + + +

Step 1	 Identify the log odds of each independent variable (b1, b2, b3,  . . .) in a 
logistic regression. If only odds ratios are available, calculate the nat-
ural log (ln) of the odds ratio to obtain the log odds. 

Step 2	 Identify the log odds of the constant (a) in a logistic regression. If only 
the odds are available, calculate the natural log (ln) of the odds to 
obtain the log odds. 

Step 3	 Determine the values of the independent variable (x1, x2, x3, . . .) for the 
specific case for which you want to predict the probability that the out-
come captured in the dependent variable will occur. 

Step 4	 For each independent variable in the logistic regression, multiply the log 
odds associated with the variable (from Step 1) by the value on the vari-
able for the specific case you want to make a prediction for (from Step 3).

Step 5	 Add together the results of Step 4 for each independent variable. 

Step 6	 Add the log odds of the constant (from Step 2) to the result of Step 5 to 
find the z-value for the specific case.

Predicted Probability

=
+

p
e

e
ˆ

1

z

z

Step 7	 Find the natural exponent of the z-value for the specific case (from 
Step 6). Do this using the ex function on a calculator, or the EXP() func-
tion in a spreadsheet. 

Step 8	 Add 1 to the result of Step 7 to find the denominator of the predicted 
probability equation.

Step 9	 Divide the result of Step 7 by the result of Step 8 to find the predicted 
probability that the outcome captured in the dependent variable will 
occur for the specific case.

Step-by-Step: Predicted Probabilities 
(Logistic Regression)

Assessing Model Fit for Logistic Regressions
For linear regressions, researchers use the R2 or the adjusted R2 to determine how 
much of the variation in the dependent variable can be explained by the independ-
ent variables. The R2 and the adjusted R2 provide an overall assessment of how well 
a linear regression model fits the observed data. Unfortunately, there is no exact 
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equivalent to R2 for logistic regressions. But many statisticians have tried to develop 
a way to assess the overall fit of a logistic regression that is similar to the R2 of a linear 
regression. These are called pseudo-R2s because, although they are conceptually 
similar to R2, they are not exactly the same. A pseudo-R2 typically reports how 
much the predictions made by a logistic regression, with one or more independent 
variables, are an improvement over a null model. You might recall from Chapter 11 
that a null model is one that does not use any independent variables. 

The most common pseudo-R2 that researchers report for logistic regressions is 
called Nagelkerke’s R2, which is popular because it ranges from 0 to 1, exactly like the 
R2 of a linear regression. Also like R2, the larger Nagelkerke’s R2 is, the better a logis-
tic regression model fits the observed data. However, because of how Nagelkerke’s 
R2 is calculated, it can’t be used to compare logistic regressions that use different 
cases or different dependent variables. Instead, Nagelkerke’s R2 is most useful for 
comparing nested logistic regressions that use the same cases to predict the same 
dependent variable. You learned about nested regressions and using blocks to group 
independent variables in Chapter 13; the same approach can be used in logistic re-
gressions. If Nagelkerke’s R2 increases substantially when independent variables are 
added to a nested logistic regression, this indicates that the variables that were added 
notably improve the fit of the model. If Nagelkerke’s R2 does not increase much when 
independent variables are added to a nested logistic regression, this indicates that the 
variables that were added do not particularly improve the fit of the model. 

To illustrate, I divided the logistic regression shown in Table 15.7 into a nested 
regression with three blocks: the first block uses the dummy variables that capture 
annual personal income, the second block adds the dummy variables that capture 
region of residence, and the third block adds the “Age” variable and the “Women” 
dummy variable. The Nagelkerke’s R2 of the first model, which predicts the odds 
of going hungry using annual personal income alone, is 0.098. In the second 
model, which incorporates region of residence into the prediction, Nagelkerke’s R2 
is 0.099; there is only a very small increase. In the third model, which adds age 
and sex/gender as predictors (and corresponds to the logistic regression in Table 
15.7), Nagelkerke’s R2 increases to 0.109. These results indicate that accounting for 
personal income substantially improves the logistic regression predictions, but ac-
counting for region of residence does not improve the model much more. Taking 
age and sex/gender into account is associated with a slight increase in Nagelkerke’s 
R2, but there is room for this logistic regression model to be improved much further. 

Many of the other strategies that researchers use to assess how well a linear 
regression model fits the data do not transfer easily to logistic regression models. 
For instance, there is no simple equivalent to analyzing regression residuals in 
the context of logistic regression. Similarly, the logistic regression procedures in 
some statistical software do not produce collinearity statistics. This does not mean 
that collinearity is not a concern in logistic regression, however, and researchers 
should still be alert to any strong correlations between independent variables. An 
investigation of the bivariate relationships between the independent variables, and 
between each independent variable and the dependent variable, should be the start-
ing point of any regression analyses—regardless of whether researchers are using 
linear regression or logistic regression techniques. 

Nagelkerke’s R2  A pseudo-R2 that 
is commonly used to assess the 
overall fit of a logistic regression.
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Logistic Regression

When the independent variables are entered in a single block and the 95 per cent 
“CI for exp(b)” option is selected, the Binary Logistic Regression procedure, pro-
duces results that look like those in Image 15.1. A similar sequence of results is 
printed for the null model—a model without any predictors—with the label “Block 
0: Beginning Block” (not shown). The results shown here are labelled “Block 1.” 
A.	 Independent variables are entered into a logistic regression in blocks. This 

regression only has a single block/step, labelled “Step 1,” and thus the 
results of the step, the block, and the model in the “Omnibus Tests of 
Model Coefficients” table are identical. A chi-square test is used to assess 
whether or not, as a group, the independent variables are likely to be re-
lated to the dependent variable in the population. The degrees of freedom 

How Does It Look in SPSS?

Continued

Image 15.1  An SPSS Logistic Regression
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are equal to the number of independent variables in the regression. These 
results are not usually reported.

B.	 The “−2 Log Likelihood” statistic is used to compare nested logistic regres-
sion models. Lower values indicate a better-fitting model. 

C.	 The “Cox & Snell R Square” is a pseudo-R2. Higher values indicate a better-
fitting model. 

D.	 The “Nagelkerke R Square” is a pseudo-R2. Higher values indicate a better-
fitting model. 

E.	 The “Classification Table” shows how the observed values on the depend-
ent variable compare to the values predicted by the logistic regression. This 
regression predicts that every case is in the “No” group (not food insecure). 
The “Percentage Correct” column shows that this regression makes the 
correct prediction for 92 per cent of cases.

F.	 The independent variables are listed in rows. The row for the constant is 
always at the bottom and is typically not discussed. 

G.	 The “B” column shows the log odds of each independent variable and the 
constant (the unstandardized coefficients). The log odds are used to calcu-
late the odds ratios and the predicted probabilities.

H.	 This column shows the standard error of the log odds of each independent 
variable and the constant. The standard error is used to calculate the con-
fidence intervals.  

I.	 These columns show the Wald chi-square statistic (which is slightly different 
than the Pearson chi-square statistic you learned about in Chapter 9) and 
the degrees of freedom of the distribution it is evaluated against.

J.	 The “Sig.” column shows the p-value associated with each Wald chi-square 
statistic. The results are interpreted in the same way as all other p-values: 
they show the likelihood of randomly selecting a sample with the observed 
relationship (or one of a greater magnitude), if no relationship exists be-
tween the independent variable and the dependent variable in the popula-
tion. For example, the p-values of the four annual personal income dummy 
variables indicate that there is a less than 0.1 per cent chance of selecting 
this sample from a population in which there is no relationship between 
annual personal income and food security. (All are p < 0.001.) 

K.	 The “Exp(B)” column shows the odds ratio associated with each independ-
ent variable and the odds associated with the constant. The numbers in 
this column are the natural exponents of the log odds in the “B” column. 
For example, these results show that people living in Atlantic Canada have 
24 per cent higher odds of being food insecure than people living in Ontario 
(the reference group); people living in the Prairies have 11 per cent higher 
odds of being food insecure than people living in Ontario.

L.	 These columns show the lower and upper bounds of the 95 per cent con-
fidence interval for each odds ratio. The width of the confidence interval 
shows how precise the logistic regression estimates are. In the population, 
people living in Atlantic Canada are estimated to have between 9 and 41 
per cent higher odds of being food insecure than people living in Ontario. 

M.	 The footnote below this table lists the independent variables used in each 
regression block/step. 
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What You Have Learned

In this chapter you were introduced to logistic regres-
sion, which is a type of non-linear regression that is 
commonly used by social scientists. Logistic regression 
allows researchers to make predictions about dichot-
omous dependent variables. It relies on mathematically 
transforming a dichotomous dependent variable so that 
it ranges from negative infinity to positive infinity. As a 
result, the slope coefficients estimated by logistic regres-
sions are the natural log of the odds that the outcome 
captured in the dependent variable will occur. Research-
ers usually transform these slope coefficients back into 
odds ratios in order to interpret logistic regression re-
sults. Researchers sometimes also present logistic re-
gression results in the form of predicted probabilities. 
Understanding the basics of logistic regression gives you 
the conceptual background needed to understand other 
types of regression for categorical dependent variables, 
such as ordinal regression and multinomial regression. 
Although a full discussion of these more advanced 

regression techniques is beyond the scope of this book, 
you may encounter them in the academic literature 
or learn more about them if you take an advanced 
statistics course. 

The research focus of this chapter was food secur-
ity and food insecurity in Canada. Access to sufficient 
amounts of culturally appropriate food is a basic human 
right. In Canada, about 8 per cent of adults experience 
food insecurity, or go hungry. Not surprisingly, food 
insecurity is strongly related to income. People with in-
comes of less than $20,000 per year are more likely to 
go hungry than people with higher incomes. Younger 
adults have a higher probability of going hungry than 
older adults. Although food banks may provide some 
relief, they do little to alleviate the larger problem of food 
insecurity: many low-income households encounter bar-
riers to accessing food banks, and if they do access them, 
they do not provide enough nutritional resources to con-
sistently prevent people from going hungry. 

Check Your Understanding

Check to see if you understand the key concepts in this 
chapter by answering the following questions:

1.	 When do researchers use logistic regressions instead 
of linear regressions? 

2.	 Why is the dependent variable transformed in a 
logistic regression?

3.	 What are odds and how are they calculated?
4.	 What does it mean to find the “natural log” of a 

variable?
5.	 What are odds ratios, and how are they calculated? 

What does it mean when an odds ratio is less than 1, 
is exactly 1, or is greater than 1?

6.	 What does the “Exp(b)” column of an SPSS logistic 
regression show? What is the difference between how 
it is interpreted for slope coefficients and for the con-
stant coefficient?

7.	 How are the standardized slope coefficients of the 
independent variables in a logistic regression calcu-
lated? What do they show?   

8.	 What is Nagelkerke’s R2? How is it interpreted?
9.	 Why is it important to identify whether researchers 

are reporting odds ratios or probabilities when they 
describe logistic regression results?
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Practice What You Have Learned 

Check to see if you can apply the key concepts in this 
chapter by answering the following questions. Keep three 
decimal places in all of the calculations in this chapter.

1.	 Calculate the odds associated with each of the fol-
lowing probabilities:

a.	 0.06
b.	 0.40
c.	 0.65
d.	 0.92

2.	 Calculate the natural log of each of the odds that you 
found in question 1. 

3.	 Your local student union circulates a petition to es-
tablish a food bank on campus. Overall, 8 per cent of 
first-year students sign the petition, and among stu-
dents in all other years, 16 per cent sign the petition. 

a.	 Calculate the odds that a first-year student will 
sign the petition.

b.	 Calculate the odds that students in other years 
will sign the petition.

c.	 Calculate the odds ratio that shows how the 
odds that a first-year student will sign the peti-
tion compare to the odds that students in other 
years will sign the petition. 

4.	 Table 15.11 shows the results of a logistic regression. 
The dependent variable captures whether or not 
people formally volunteered for a group or organiz-
ation in the past 12 months. (A “1” value indicates 
they volunteered, and “0” indicates they did not vol-
unteer.) The independent variable is sex/gender, cap-
tured in a dummy variable. Explain what the odds 
ratio of the “Women” dummy variable shows. 

Table 15.11  Results of a Logistic Regression with a 
Dummy Variable as an Independent Variable 
Dependent variable: Formally volunteered for a group or 
organization in the past 12 months (n = 13,623)

Unstandardized 
Coefficient 

Odds
Ratio

Women 0.108* 1.11

Constant −0.311* 0.73

Nagelkerke R2 0.001
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2015.

5.	 Using the information in Table 15.11:

a.	 Calculate the z-value for women and for men.
b.	 Calculate the predicted probability of volunteer-

ing for women and for men. 

6.	 Table 15.12 shows the results of a logistic regression 
predicting whether or not people formally volun-
teered for a group or organization in the past 12 
months, using a ratio-level “Age” variable as the in-
dependent variable. Explain what the odds ratio of 
the “Age” variable shows. 

7.	 Using the information in Table 15.12:

a.	 Calculate the z-value for people at different ages, 
ranging from 20 to 80 (i.e., age 20, 30, 40, 50, 60, 
70, and 80). 

Table 15.12  Results of a Logistic Regression with a 
Ratio-Level Independent Variable
Dependent variable: Formally volunteered for a group or 
organization in the past 12 months (n = 13,623)

Unstandardized 
Coefficient 

Odds
Ratio

Age (in years) −0.012* 0.99

Constant 0.276* 1.32

Nagelkerke R2 0.015
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2015.

b.	 Calculate the predicted probability of volunteer-
ing for people at each age. 

c.	 Either by hand or using a spreadsheet program, 
create a graph showing the predicted probability 
of volunteering for people at each age. 

8.	 Table 15.13 shows the results of a logistic regression 
predicting whether or not people formally volun-
teered for a group or organization in the past 12 
months, using both the ratio-level “Age” variable 
and the “Women” dummy variable as independent 
variables. 

a.	 Explain what the odds ratio of the “Age” vari-
able shows. Be sure to pay attention to the idea 
of “controlling.” 

b.	 Explain what the odds ratio of the “Women” 
dummy variable shows. 
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Table 15.13  Results of a Logistic Regression with 
Two Independent Variables (One Ratio-Level Variable 
and One Dummy Variable)
Dependent variable: Formally volunteered for a group or 
organization in the past 12 months (n = 13,623)

Unstandardized 
Coefficient 

Odds
Ratio

Age (in years) −0.012* 0.99

Women 0.124* 1.13

Constant 0.219* 1.24

Nagelkerke R2 0.016
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2015.

9.	 Using the information in Table 15.13, calculate the 
predicted probability of volunteering for each of the 
following people:

a.	 An 18-year-old man
b.	 A 45-year-old woman
c.	 A 65-year-old man

10.	 Using the information in Table 15.13 and the same 
approach as in question 9, calculate the predicted 
probability of volunteering for men and women at 
different ages, ranging from 20 to 80 (i.e., age 20, 
30, 40, 50, 60, 70, and 80). Either by hand or using 
a spreadsheet program, create a graph showing the 
predicted probability of volunteering for men and 
women at each age. 

11.	 For the logistic regression shown in Table 15.13, the 
standard deviation of the dependent variable (“For-
mally volunteered for a group or organization in the 
past 12 months”) is 0.496, the standard deviation of 
the “Age” variable is 18.273, and the standard devia-
tion of the “Women” dummy variable is 0.500. 

a.	 Calculate the standardized slope coefficient of 
the “Age” variable.

b.	 Calculate the standardized slope coefficient of 
the “Women” dummy variable.

c.	 Determine which independent variable has the 
strongest relationship with the dependent vari-
able, using the standardized slope coefficients.

12.	 Table 15.14 shows a nested logistic regression with 
three blocks, predicting whether or not people 

formally volunteered for a group or organization 
in the past 12 months. The first block uses the same 
independent variables as the regression shown in 
Table 15.13. Similar to the linear regression shown 
in Table 13.8, the second block adds variables cap-
turing socio-economic characteristics, and the third 
block adds indicators of community engagement, 
including whether or not people donated money to 
a charitable organization in the past 12 months, and 
whether or not they participate in religious activities/
services at least once a month. 

a.	 Explain what the odds ratio of the “Annual 
personal income” variable in the second model 
shows. Be sure to pay attention to the idea of 
“controlling.”

b.	 Explain what the odds ratios of three education 
dummy variables in the second model show. 

c.	 Describe the general pattern of the relationship 
between education and volunteering shown in 
the second model.

d.	 Taking both education and income into ac-
count, describe how socio-economic status ap-
pears to be associated with volunteering. How 
might you explain this result?

13.	 Using the information in Table 15.14:

a.	 Explain what the odds ratio of the “Donated 
money to a charitable organization in the past 
12 months” dummy variable in the third model 
shows. 

b.	 Explain what the odds ratio of the “Participates 
in religious activities/services once a month or 
more often” dummy variable shows.

c.	 Describe how the odds ratios of the other in-
dependent variables change between the second 
and the third model.

14.	 Using the information in Table 15.14, describe how 
the Nagelkerke R2 changes between the three models. 
Explain what these changes show. 

15.	 The logistic regression model in Table 15.15, ex-
cerpted from a Journal of School Health article, 
predicts whether Canadian students in grades 6 
to 12 consume the recommended amount of fruits 
and vegetables (as determined by Canada’s Food 
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Table 15.14  Results of a Nested Logistic Regression, with Three Blocks

Dependent variable: Formally volunteered for a group or organization in the past 12 months (n = 13,623)

Odds Ratio

Model 1 Model 2 Model 3

Personal Characteristics

Age (in years) 0.99* 0.99* 0.98*

Women 1.13* 1.21* 1.13*

Socio-economic Characteristics

Annual personal income (in thousands of dollars) 1.00* 1.00*

Education (ref: high school only)

	 Less than high school 1.22* 1.27*

	 Post-secondary diploma 1.24* 1.21*

	 University degree 1.94* 1.86*

Community Engagement Characteristics

Donated money to a charitable organization in the past 12 
months 

2.09*

Participates in religious activities/services once a month or 
more often 

2.10*

Constant 1.24* 0.84* 0.49*

Nagelkerke R2 0.02 0.05 0.10
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2015.

Guide; recommended amounts vary depending on 
age and gender). Overall, only about 10 per cent of 
students in grades 6 to 12 eat enough fruits and 
vegetables. All of the independent variables (pre-
dictors) in the model are dummy variables, with 
the reference group identified. School achievement 
and students’ weekly spending allowance are also 
controlled for in this regression, but not displayed 
in this table. 

a.	 Explain what the odds ratio of the “Boys” 
dummy variable shows. Be sure to pay atten-
tion to p-value and the 99 per cent confidence 
interval. 

b.	 Explain what the odds ratio of each of the six 
grade dummy variables show. Be sure to pay 
attention to the p-values.

c.	 Describe the general pattern of the relationship 
between students’ grade and whether or not they 
meet the fruit and vegetable recommendations.

16.	 Using the information in Table 15.15:

a.	 Explain what the odds ratio of the eight prov-
inces dummy variables show. Be sure to pay 
attention to the p-values. 

b.	 Explain what the odds ratio of the five ethnicity 
dummy variables show. Again, be sure to pay 
attention to the p-values. 
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Table 15.15  Logistic Regression Analysis of Variables Related to the Odds of Meeting Fruit and Vegetable 
Consumption Recommendations, Grades 6–12, Canada, 2012−2013 YSS

Predictors
Meet FV

Recommendations (%)

Meeting FV Recommendations among
All Students (Model 1: N = 36,455)

OR Adjusted (99% CI) p-Value

Sex

Girls (ref) 10.7 1.0

Boys 9.2 0.89 (0.77, 1.03) 0.0450

Grade

6 (ref) 17.9 1.0

7 17.1 0.92 (0.75, 1.14) 0.3188

8 10.9 0.51 (0.41, 0.65) <0.000

9 5.6 0.23 (0.18, 0.31) <0.000

10 6.3 0.25 (0.18, 0.33) <0.000

11 6.6 0.22 (0.16, 0.30) <0.000

12 6.8 0.22 (0.15, 0.31) <0.000

Provinces

Ontario (ref) 8.7 1.0

Newfoundland 7.4 0.69 (0.54, 0.89) 0.0001

Prince Edward Island 8.3 0.70 (0.53, 0.91) 0.0005

Nova Scotia 9.4 0.72 (0.57, 0.91) 0.0003

New Brunswick 9.6 0.89 (0.71, 1.12) 0.2005

Quebec 10.2 0.83 (0.68, 1.02) 0.0186

Saskatchewan 9.4 0.83 (0.66, 1.05) 0.0416

Alberta 9.9 0.91 (0.73, 1.13) 0.2544

British Columbia 10.3 0.99 (0.81, 1.21) 0.9171

Ethnicity

White (ref) 9.5 1.0

Black 10.4 1.18 (0.85, 1.64) 0.1850

Asian 11.6 1.11 (0.88, 1.42) 0.2464

Aboriginal 10.2 1.25 (0.95, 1.65) 0.0402

Latin American 13.9 1.56 (0.97, 2.52) 0.0164

Other 11.6 1.33 (1.01, 1.78) 0.0098
CI, confidence interval; FV, fruit and vegetable; N, number; OR, odds ratio; YSS, Youth Smoking Survey.

Source: Excerpt from Minaker and Hammond 2016, 139.
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Answer these questions using IBM SPSS and the GSS27.
sav or the GSS27_student.sav dataset available from the 
Student Resources area of the companion website for this 
book. Weight the data using the “Standardized person 
weight” [STD_WGHT] variable you created following 
the instructions in Chapter 5. Report two decimal places 
in your answers, unless fewer are printed by IBM SPSS. It 
is imperative that you save the dataset to keep any new 
variables that you create.

Note: The Binary Logistic procedure needed to answer 
these questions is only available in the Standard, Profes-
sional, and Premium editions of IBM SPSS; it is not avail-
able in the Base edition.  

1.	 The variable “Victim of Discrimination – 5 years” 
[DISCRIM] shows people’s answers to a sequence 
of questions asking people the following: “In the 
past five years, have you experienced discrimina-
tion or been treated unfairly by others in Canada 
because of your . . . sex, ethnicity or culture, race or 
colour, physical appearance, religion, sexual orien-
tation, age, a disability, language, or some other 
reason?” Use the Recode into Different Variables 
tool to recode this variable into an “Experienced 
discrimination” [DISCRIM_RECODED] dummy 
variable to use as the dependent variable in a logistic 
regression. In the new variable, assign the value “1” 
to people who have been the victim of discrimina-
tion in the past five years (for any reason), and assign 
the value “0” to people who have not been the victim 
of discrimination in the past five years. The remain-
ing values can be designated as system-missing in 
the new variable. Produce frequency distributions 
of the original variable “Victim of Discrimination 
– 5 years” [DISCRIM] and the new variable “Experi-
enced discrimination” [DISCRIM_RECODED] and 
compare them to be sure that the recoding is correct. 

2.	 Use the Binary Logistic Regression procedure to pro-
duce a regression of the independent variable “Visible 
minority” [IS_VISMIN] (you created this variable in 
question 2 of “Practice Using Statistical Software” in 
Chapter 13) on the dependent variable “Experienced 
discrimination” [DISCRIM_RECODED]. Explain 

what the odds ratio of the “Visible minority” dummy 
variable shows. 

3.	 Use the options in the Binary Logistic Regression 
procedure to generate 95 per cent confidence inter-
vals for the coefficients of the regression of the in-
dependent variable “Visible minority” [IS_VISMIN] 
on the dependent variable “Experienced discrimin-
ation” [DISCRIM_RECODED]. Explain what the 
confidence interval for the odds ratio of the “Visible 
minority” dummy variable shows. 

4.	 Use the Binary Logistic Regression procedure to pro-
duce a regression of the independent variable “Age” 
[AGE] (you created this variable in question 1[a] of 
“Practice Using Statistical Software” in Chapter 13) 
on the dependent variable “Experienced discrimin-
ation” [DISCRIM_RECODED]. Explain what the 
odds ratio of the “Age” variable shows.

5.	 Use the Binary Logistic Regression procedure to 
produce a regression of the independent variables 
“Age” [AGE], “Visible minority” [IS_VISMIN], and 
“Women” [WOMEN] (you created this variable in 
question 3 of “Practice Using Statistical Software” in 
Chapter 12) on the dependent variable “Experienced 
discrimination” [DISCRIM_RECODED]. Explain 
what the odds ratios of the three independent vari-
ables show. Be sure to pay attention to the idea of 
“controlling.” 

6.	 Use the Save option in the Binary Logistic Regres-
sion procedure to save the predicted probabilities 
generated by the regression of the independent vari-
ables “Age” [AGE], Visible minority” [IS_VISMIN], 
and “Women” [WOMEN] on the dependent vari-
able “Experienced discrimination” [DISCRIM_RE-
CODED]. Use the Means procedure with the newly 
saved “Predicted probability” [PRE_1] variable to 
identify the lowest (minimum), highest (maximum), 
and average predicted probability of experiencing 
discrimination. 

7.	 Use the Select Cases tool to select cases if the “Pre-
dicted probability” [PRE_1] is greater than or equal 
to “0” and the “Experienced discrimination” [DIS-
CRIM_RECODED] variable is greater than or equal 
to “0”. This ensures that only cases that are used in 

Practice Using Statistical Software (IBM SPSS)
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the logistic regression model you produced in ques-
tion 6 are used to calculate the statistics.  

a.	 Find the standard deviation of the depend-
ent variable, “Experienced discrimination” 
[DISCRIM_RECODED]. 

b.	 Find the standard deviation of the three in-
dependent variables: “Age” [AGE], Visible min-
ority” [IS_VISMIN], and “Women” [WOMEN].

c.	 Use the standard deviations to calculate the 
standardized slope coefficients of each of the 
three independent variables. (For this question, 
keep three decimal places in your calculations.)

d.	 Determine which independent variable has the 
strongest relationship with the dependent vari-
able, using the standardized slope coefficients. 

After completing this question, use the Select Cases 
tool to return to using all of the cases.

8.	 Create three dummy variables to capture people’s 
religious affiliation. Use the Recode into Different 
Variables tool to recode the variable “Religion of re-
spondent - 7 categories” [RELIG7] into dummy vari-
ables as follows: 

a.	 Create the new dummy variable “No religion” 
[NORELIGION] by assigning the old value “7” 
the new value “1”, and assigning the old values “1” 
through “6” the new value “0”. (The remaining 
values can be designated as system-missing in 
the new variable.) 

b.	 Create the new dummy variable “Christian” 
[CHRISTIAN] by assigning the old value “2” 
the new value “1”, and assigning the old value “1” 
and the old values “3” through “7” the new value 
“0”. (The remaining values can be designated as 
system-missing in the new variable.) 

c.	 Create the new dummy variable “Other reli-
gion” [OTHER_RELIG] by assigning the old 
values “1”, “3”, “4”, “5”, and “6” the new value “1”, 
and assigning the old values “2” and “7” the new 
value “0”. (The remaining values can be desig-
nated as system-missing in the new variable.) 

d.	 Produce frequency distributions of the original 
variable “Religion of respondent - 7 categories” 
[RELIG7] and each of the three new dummy 
variables “No religion” [NORELIGION], 
“Christian” [CHRISTIAN], and “Other reli-
gion” [OTHER_RELIG], and compare them to 
be sure the recoding is correct.

9.	 Use the Binary Logistic Regression procedure to 
produce a nested regression, using “Experienced 
discrimination” [DISCRIM_RECODED] as the 
dependent variable. In the first block, use the same 
three independent variables as in the regression in 
questions 5 and 6: “Age” [AGE], Visible minority” 
[IS_VISMIN], and “Women” [WOMEN]. In the 
second block, add the variables “Christian” [CHRIS-
TIAN] and “Other religions” [OTHER_RELIG]. 
(“No religion” [NORELIGION] is the reference 
group.)

a.	 Explain what the odds ratios of the two religion 
dummy variables in the second block show.

b.	 Compare the odds ratios of the “Age,” “Visible 
minority” and “Women” variables in the first 
and second blocks. How does the magnitude of 
the odds ratio of each of these three variables 
change after religion is controlled for? 

c.	 Describe how the Nagelkerke R2 of the second 
model compares to that of the first model, and 
explain what this result shows.

Key Formulas
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