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Introduction
Chapters 14 and 15 introduce more advanced regression techniques that are regu-
larly used by social science researchers. The goal of these chapters is to explain why 
researchers use these more advanced techniques and to illustrate how to interpret 
the regression coefficients that are produced. In this chapter, you’ll learn why and 
how researchers manipulate independent variables in linear regressions. In par-
ticular, you’ll learn how interaction variables allow researchers to estimate different 
slope coefficients for different subgroups within a sample, and how quadratic vari-
ables allow researchers to model curvilinear relationships. You’ll also learn how 
skewed variables can be transformed so that they become more normally distrib-
uted. These techniques allow researchers to build regression models that fit the data 
well and that more accurately reflect real-world relationships and social processes.

The research focus of this chapter is literacy skills. Literacy refers to people’s 
ability to understand, evaluate, use, and engage with written texts to participate in 
society, to achieve their goals, and to develop their knowledge and potential (PIAAC 
Literacy Expert Group 2009, 8). The United Nations identifies literacy as a fundamen-
tal human right that is essential to social and human development (UNESCO 2016). It 
asserts that “for individuals, families, and societies alike, [literacy] is an instrument 
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Learning Objectives

In this chapter, you will learn:

•	 What interaction variables are and why they are used

•	 How to interpret the results of linear regressions that use interaction 
variables 
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•	 How to interpret the results of linear regressions that use log-transformed 
variables
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of empowerment to improve one’s health, one’s income, and one’s relationship with 
the world” (UNESCO 2016). Relatively high levels of literacy, including digital literacy, 
are essential for people to be able to participate fully in Canadian society. As fed-
eral, provincial, and municipal governments adopt e-government strategies, access to 
many basic services requires navigating and deciphering web pages and completing 
online forms. In addition, information available over the Internet varies in quality, so 
people need to be able to evaluate what they read, especially when that information 
relates to social and political issues or provides health and illness information. The 
emergence of “fake news”—that is, news stories that are fabricated for the purpose of 
drawing traffic to advertising—which is shared widely through social media, high-
lights the importance of developing these evaluative skills. Although only about 4 per 
cent of people in Canada are completely illiterate (Harwood 2012), people with low 
literacy skills experience substantial disadvantages. Compared to those with high lit-
eracy skills, people with low literacy skills are more likely to be unemployed, to work 
fewer weeks per year, and to earn lower wages (Murray and Shilington 2011). People 
with low literacy skills are also more likely than people with higher literacy skills to 
live in low-income households, even after controlling for level of education, immigra-
tion status, and family size and type (Heisz, Notten, and Situ 2016).

The statistical analyses in this chapter rely on Canadian data from a survey 
developed to measure adults’ literacy, numeracy, and technological skill levels in 
OECD (Organisation for Economic Co-operation and Development) countries, 
called the Programme for the International Assessment of Adult Competencies 

Photo 14.1  Strong literacy skills, including digital literacy skills, are needed to 
participate fully in Canadian society.

gr
in

va
ld

s/
iS

to
ck

ph
ot

o



4

noa15214_ch14_001-040.indd  4� 01/11/18  09:33 PM

PART IV  |  More Regression Modelling Techniques

(PIAAC). (See the “Spotlight on Data” box for more information.) Literacy is meas-
ured by asking people to complete a series of tasks that require them to access and 
identify information, integrate and interpret information, and evaluate and reflect 
on information (OECD 2012). The results are combined to produce a literacy scale 
score ranging from 0 to 500. (I refer to this as a “literacy score” throughout this 
chapter.) Literacy scores are grouped into five general proficiency levels, as follows: 

•	 Below Level 1 (score of 0–175): Tasks at this level require people to read short 
texts on familiar topics to locate a single piece of specific information.

•	 Level 1 (score of 176–225): Most tasks at this level require people to read 
relatively short texts to locate a single piece of information that is identical 
to the information given in the question.

•	 Level 2 (score of 226–275): Tasks at this level require people to make 
matches between the text and information and may require paraphrasing 
or low-level inferences.

•	 Level 3 (score of 276–325): Texts at this level are dense or lengthy and can 
include several pages. Understanding text and rhetorical structures be-
comes more central to successfully completing tasks, especially navigating 
complex digital texts.

•	 Level 4 (score of 326–375): Tasks at this level require people to perform 
multiple-step operations to integrate, interpret, or synthesize information 
from complex or lengthy texts.

•	 Level 5 (score of 376–500): Tasks at this level require people to search for 
and integrate information across multiple, dense texts; construct syn-
theses of similar and contrasting ideas or points of view; or evaluate 
evidence-based arguments.

The majority of jobs in Canada require at least Level 3 literacy skills, yet 43 per cent 
of all students leaving Canada’s high schools have not achieved this level (Harwood 
2012). There are many barriers to achieving high levels of literacy, including low per-
sonal motivation, lack of family support, increased family responsibilities, insufficient 
educational support, and the inability to obtain jobs that reinforce literacy skills (Tillec-
zek and Campbell 2013). In part, literacy skills are an indicator of the socio-economic 
status, or social class, of the family that people grow up in (Willms and Watson 2008). 
High-status and highly educated parents are more likely to foster high-level literacy 
skills in their children through their parenting practices and family activities. 

In the Canadian PIAAC sample, the average literacy score is 273 (s.d. = 50). 
Slightly more than half of respondents (51 per cent) have a literacy score at Level 
3 or higher, whereas 4 per cent are below Level 1, 13 per cent are at Level 1, and 32 
per cent are at Level 2. Compared to other OECD nations, Canada has a relatively 
high percentage of adults at Level 3 or higher, ranking twelfth overall; the five na-
tions with the largest proportion of adults at Level 3 or higher are Japan, Finland, 
Netherlands, Sweden, and Australia (OECD 2106). Notably, Canada has a higher 
proportion of people with a post-secondary educational credential than all of these 
top-five nations, suggesting that there may be a disconnect between educational 
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achievement and applied literacy skills. In this chapter, statistical analysis is used 
to discover the following: 

•	 How is age related to literacy scores?
•	 How is having a post-secondary education related to literacy scores?
•	 How does the relationship between age and literacy scores change when 

having a post-secondary education is accounted for?
•	 Is the amount of time that people spend engaged in non-formal educa-

tional activities related to literacy scores? 

The Programme for the International Assessment  
of Adult Competencies

The Programme for the International Assessment of Adult Competencies (PIAAC) 
is an initiative of the Organisation for Economic Co-operation and Development 
(OECD). It is designed to help governments assess, monitor, and analyze the level 
and distribution of skills among their adult populations, and to provide data that 
are comparable across many countries (OECD n.d.). Twenty-four countries have 
participated in the PIAAC adult skills survey; the analyses in this chapter use only 
the Canadian data.

The PIAAC survey collects information about people’s participation in formal 
and informal education, their occupation and work history, their technology use, 
their language profile, and their demographic characteristics. In addition, re-
spondents complete a series of tests designed to assess literacy, numeracy, 
and problem-solving and reading skills. In Canada, the survey questionnaire and 
tests are available in both English and French. 

The survey population is people aged 16 to 65. People residing in institu-
tions, on Aboriginal reserves, on military bases, and in some sparsely popu-
lated areas are not included. Multi-stage, stratified sampling is used to select 
respondents (Statistics Canada 2017). First, geographic clusters, stratified by 
rural or urban status, are selected. Then, households are selected from within 
each cluster, and, finally, one individual is randomly selected from within each 
household. The data used in this chapter were collected between November 
2011 and June 2012, and the overall response rate was 58 per cent. Weights 
that account for the probability of selection, non-response bias, and population 
characteristics are included in the dataset. 

Because of the complex sampling and measurement in the PIAAC survey, 
researchers must use a secondary software tool to analyze the data. The Inter-
national Database (IDB) Analyzer produces SPSS syntax (code) that accounts for 
the complex sampling and assessment structures of several large international 
surveys, including PIAAC. 

Spotlight on Data
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Using Interaction Variables  
in Linear Regression
In Chapter 12, you learned how multiple linear regression allows researchers to 
identify the unique influence of each independent variable on a dependent variable. 
In our complex social world, however, sometimes two or more things interact with 
each other to jointly influence something. An interaction effect occurs when two 
or more independent variables are jointly related to a dependent variable, and their 
combined influence is different than the sum of the influence of each variable alone. 
In other words, an interaction effect occurs when the relationship between two vari-
ables changes when a third variable is taken into account. You were first introduced 
to interaction effects when you learned about the elaboration model. For instance, in 
Chapter 9, the elaboration model showed how the relationship between contact with 
police and perceptions of police fairness is influenced by racialization. Similarly, in 
Chapter 10, the elaboration model showed how the relationship between years since 
immigration and annual employment income is also influenced by racialization. 

To illustrate how interaction effects are captured in regression, let’s investigate 
the relationship between age and literacy scores and consider how that relationship 
is influenced by education. Table 14.1 shows the average literacy scores for people 
in different age cohorts and with different levels of education. On average, people 
in younger age cohorts have higher literacy scores than people in older age cohorts. 
The 25- to 34-year-old age cohort has the highest average literacy score (mean = 
285; s.d. = 48), and the 55- to 65-year-old age cohort has the lowest average literacy 
score (mean = 260; s.d. = 51). In part, these results reflect the educational trajector-
ies of people in different age cohorts. People aged 65 in 2012 were born in 1947 and, 
thus, likely attended high school during the 1960s, when access to post-secondary 
education was more limited. As a result, a smaller proportion of people in the 55 
to 65 age cohort have a post-secondary educational credential: only 58 per cent 
compared to 72 per cent in the 25 to 34 age cohort. In addition, the literacy skills of 
people in older age cohorts may have eroded during the time after leaving formal 
schooling; this is particularly likely for people whose jobs do not require higher 
literacy skills. 

As expected, people with higher levels of education have higher literacy scores, 
on average, than those with lower levels of education. The average literacy score of 
people who do not have a high school diploma is 234 (s.d. = 53) whereas the average 
literacy score of people with a university bachelor’s degree is 298 (s.d. = 44); the 
average literacy score of people with a university graduate degree is 305 (s.d. = 43). 
These results underscore the importance of ensuring widespread access to post-sec-
ondary education so that Canada remains competitive in a globalized, knowledge 
economy. Notably, more variation in literacy scores exists among people with 
lower levels of education, a result that may be related to people’s different levels of 
engagement in everyday literacy practices and participation in informal learning. 

It’s possible that the relationship between age and literacy scores exists only be-
cause people in different age cohorts have different levels of education. To investigate 
this possibility, I use the elaboration model to show the relationship between age and 

interaction effect  Occurs when two  
or more independent variables are 
jointly related to a dependent vari-
able, and their combined influence 
is different than the summed influ-
ence of each variable alone.
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Table 14.1  Literacy Scale Scores, by Age Group and Highest Educational 
Credential (n = 26,653)

Literacy Score

Characteristic Percentage Mean Std. Dev.

Age cohort

	 16 to 24 17.2 275.7 45.2

	 25 to 34 20.1 285.0 48.2

	 35 to 44 19.5 279.5 50.4

	 45 to 54 22.6 267.8 52.7

	 55 to 65 20.6 260.3 50.6

Highest educational credential

	 Less than high school 15.2 233.5 52.5

	 High school diploma or equivalent 24.7 267.1 46.3

	 Apprenticeship, upgrading, or trade 
certificate 14.0 271.4 42.8

	 College/CÉGEP or university diploma/
certificate 20.6 278.9 44.2

	 University bachelor’s degree 19.5 298.3 44.4

	 University master’s/research degree 6.0 304.8 43.1

Total/Overall 100.0 273.3 50.4

Source: Author generated; Calculated using data from Statistics Canada, 2017.

literacy scores for two separate groups: people with a post-secondary educational cre-
dential and people without a post-secondary educational credential. Table 14.2 shows 
the average literacy scores for people in each age cohort, after accounting for whether 
or not they have a post-secondary educational credential. Among people who do not 
have a post-secondary education, the highest average literacy score is 271 (s.d. = 45) in 
the age 16 to 24 cohort, and the lowest average literacy score is 240 (s.d. = 53), which 
occurs in the age 45 to 54 cohort. Among people who do not have a post-secondary 
education, there is a 31-point difference between the average literacy scores of people 
in the youngest age cohort and people in the two oldest age cohorts. As expected, 
in every age cohort, the average literacy scores of people who have a post-secondary 
education are higher than the average literacy scores of people who do not have a 
post-secondary education. Among people with a post-secondary education, the high-
est average literacy score is 295 (s.d. = 44), which occurs in the age 25 to 34 cohort 
(relatively few people aged 16 to 24 have completed post-secondary education); and the 
lowest average literacy score is 275 (s.d. = 46), which occurs in the age 55 to 65 cohort. 
In other words, among people with a post-secondary education, there is only a 20-
point difference between the average literacy scores of people in the second-youngest 
age cohort and people in the oldest age cohort. 

In the sample overall, the difference between the age cohort with the highest 
average literacy score and the age cohort with the lowest average literacy score—or 
the zero-order relationship—is 25 points. (See Table 14.1.) Thus, this elaboration 
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Table 14.2  Using the Elaboration Model to Understand How the Relationship 
between Age and Literacy Scores Is Influenced by Level of Education  
(n = 26,653)

No Post-Secondary  
Educational Credential

Has Post-Secondary 
Educational Credential

Literacy Score Literacy Score

Percentage Mean Std. Dev. Percentage Mean Std. Dev.

Age cohort

	 16 to 24 32.7 270.8 45.3 7.0 291.0 41.6

	 25 to 34 14.2 259.6 49.6 24.0 294.9 43.7

	 35 to 44 12.6 249.9 54.6 24.2 289.7 44.4

	 45 to 54 18.9 240.4 53.2 25.0 281.6 46.6

	 55 to 65 21.6 240.5 50.1 19.8 274.7 45.9

Total/Overall 100.0 254.3 51.4 100.0 286.0 45.5

Source: Author generated; Calculated using data from Statistics Canada, 2017.

model provides another example of specification: the relationship between age and 
literacy scores is stronger among people without a post-secondary education (a 31-
point difference in average scores) and weaker among people with a post-secondary 
education (a 20-point difference in average scores). People with a post-secondary 
education are more likely to work in jobs that require high-level literacy skills; 
thus, they are likely to maintain and develop their literacy skills over their employ-
ment careers. 

Now let’s use multiple linear regression to model the general pattern of the re-
lationship between age, level of education, and literacy scores. Age and level of edu-
cation are both treated as independent variables, and literacy score is treated as the 
dependent variable. A pseudo-continuous age variable was created by recoding the 
variable capturing people’s ages in five-year intervals, using the method described 
in the “Hands-on Data Analysis” box in Chapter 13. The pseudo-continuous age 
variable is centred on 40 to make the constant coefficient easier to interpret. Level 
of education is measured using a dummy variable indicating whether people have 
a post-secondary educational credential (anything above high school, which has 
a “1” value) or not (only high school or less, which has a “0” value). Table 14.3 
shows the regression results. The constant coefficient indicates that the predicted 
literacy score of people who are 40 years old and who do not have a post-secondary 
education is 270, or at Level 2. Each one-year increase in age is associated with 
having a literacy score that is 0.71 points lower; thus, every ten-year increase in 
age is associated with having a literacy score that is 7.1 points lower. People with a 
post-secondary education are predicted to have a literacy score that is 17.49 points 
higher than people without a post-secondary education. The adjusted R2 statistic 
indicates that 13 per cent of the variation in literacy scores can be explained by age 
and level of education. 
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Table 14.3  Results of a Multiple Linear Regression Predicting Literacy Scores, 
Using Age and Level of Education 

Dependent variable: Literacy scale score (n = 25,653)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 270.23* –

Age (in years, centred on 40) −0.71* –0.20

Has a post-secondary educational credential 17.49* 0.34

Adjusted R2 0.13
* Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.

These regression coefficients can be substituted into a regression prediction 
equation to find the predicted literacy scores of people at various ages, with and 
without a post-secondary education. The prediction equation for the regression 
shown in Table 14.3 is: 

= + +y a b x b xˆ
1 1 2 2

= + − +
Predicted literacy score

age centred has post ndary education
   

270.23 ( 0.71)( ) 17.49( - )seco

Since the age variable is centred on 40, this must be accounted for in the pre-
diction equation; for instance, a 16-year-old has the value −24 on the centred age 
variable, since age 16 is 24 years less than age 40. The post-secondary education 
variable is a dummy variable, with the value “0” or “1”, indicating the presence or 
absence of a post-secondary educational credential. So the predicted literacy score 
of a 16-year-old without a post-secondary education is: 

( )( ) ( )= + − − +Predicted literacy score    270.23 0.71 24 17.49 0

= +270.23 17.04

= 287.27

The predicted literacy score of a (very bright!) 16-year-old with a post-secondary 
education is:

( )( ) ( )= + − − +Predicted literacy score    270.23 0.71 24 17.49 1

= + +270.23 17.04 17.49

= 304.76

Similarly, the predicted literacy scores of a 65-year-old, without and with a 
post-secondary education, respectively, are: 

( )( ) ( )= + − +Predicted literacy score    270.23 0.71 25 17.49 0

( )= + −270.23 17.75
= 252.48
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( )( ) ( )= + − +Predicted literacy score    270.23 0.71 25 17.49 1

( )= + − +270.23 17.75 17.49
= 269.97

As you learned in Chapter 12, these results can be used to plot the predicted 
literacy scores of people at various ages, with different levels of education. (See 
Figure 14.1.) The horizontal dotted line in Figure 14.1 is the cut-off point between 
Level 2 and Level 3 literacy skills; recall that most jobs in Canada require at least 
Level 3 literacy skills. There are two regression lines: one showing the predicted 
literacy scores among people with a post-secondary education and one show-
ing the predicted literacy scores among people without a post-secondary educa-
tion. The two lines are parallel, and the distance between them is determined by 
the regression coefficient of the “Has a post-secondary educational credential” 
dummy variable. 

Although these predictions are a good start, the elaboration model results sug-
gest that having a post-secondary education (or not) influences the magnitude of 
the relationship between age and literacy scores. Age seems to have a stronger rela-
tionship with literacy scores for people without a post-secondary education than for 
people with a post-secondary education. The implication of the elaboration model 
result is that the two regression lines depicted in Figure 14.1 should have different 
slopes: the angle of the line should be steeper for people without a post-secondary 
education, and flatter for people with a post-secondary education. 

Figure 14.1  Literacy Scores Predicted by the Regression in Table 14.3

Source: Author generated; Calculated using data from Statistics Canada, 2017.
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Interaction variables (also called interaction terms) allow researchers to use 
linear regression to predict relationships of different magnitudes for different 
groups of people. In other words, interaction variables make it possible to predict 
regression lines with different slopes for different subgroups, all in a single model. 
Let’s add a variable to the regression in Table 14.3 that captures the interaction be-
tween age and level of education. Interaction variables are created by multiplying 
the values on two (or more) independent variables together for each case. Table 14.4 
shows the values on an “Age” variable, a “Has a post-secondary educational creden-
tial” dummy variable, and a variable capturing their interaction for 10 hypothetical 
people. For the first five people, the “Has a post-secondary educational credential” 
dummy variable has a “0” value and, thus, the interaction variable has a “0” value, 
since 0 multiplied by any age equals 0. For the final five people, the “Has a post-sec-
ondary educational credential” dummy variable has a “1” value and, thus, the inter-
action variable has a value equal to people’s age, since people’s age multiplied by 
1 is equal to their age. Interaction variables are usually created using statistical 
software. 

Once an interaction variable has been created, it can be used as an independ-
ent variable in a regression, just like any other variable. Whenever an interaction 
variable is used in a regression, though, the variables used to create the interaction 
variable must also be used as independent variables in the regression; otherwise 
the results are very difficult to interpret. Table 14.5 shows the results of a multiple 
linear regression predicting literacy scores, using three independent variables: a 
(centred) “Age” variable, a “Has a post-secondary educational credential” dummy 
variable, and an interaction variable, which was created by multiplying the value 
on the (centred) “Age” variable by the value on the “Has a post-secondary educa-
tional credential” dummy variable for each case. As always, the constant coefficient 

interaction variable  Created by 
multiplying the values on two or 
more variables together for every 
case.

Table 14.4  Values on an Interaction Variable for 10 Hypothetical Cases

Person Age (in Years)

Has a Post-
Secondary 
Educational 
Credential 

(Dummy Variable)

Age x 
Post-Secondary 

Educational Credential 
 (Interaction Variable)

Tamar 20 0 0

Liz 30 0 0

Danielle 40 0 0

Geza 50 0 0

David 60 0 0

Tai Lee 20 1 20

Sumi 30 1 30

Lucas 40 1 40

Mithi 50 1 50

William 60 1 60
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Table 14.5  Results of a Multiple Linear Regression with Three Independent 
Variables (One Interaction Variable)

Dependent variable: Literacy scale score (n = 26,653)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 270.01* –

Age (in years, centred on 40) −0.80* −0.22

Has a post-secondary educational credential 17.47* 0.34

Age (centred) x post-secondary educational 
credential 0.19* 0.04

Adjusted R2 0.13
* Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.

shows the predicted value on the dependent variable for people with a “0” value on 
all of the independent variables. Thus, 270 is the predicted literacy score for people 
aged 40 who do not have a post-secondary education. These people also have a “0” 
value on the interaction variable because a “0” value on the “Age” variable multi-
plied by a “0” value on the “Has a post-secondary educational credential” variable 
is equal to 0.

The interpretation of the slope coefficients is slightly different when a linear 
regression uses an interaction variable as an independent variable. The slope co-
efficients still show the change in the dependent variable that is associated with 
a one-unit increase in the independent variable. But, because of the interaction 
variable, the slope coefficient of the “Age” variable shows the predicted relation-
ship between age and literacy scores, when the “Has a post-secondary educational 
credential” variable equals 0. In other words, it shows the slope of the regression 
line for people who do not have a post-secondary education. The slope coefficient 
of the “Has a post-secondary educational credential” variable shows the predicted 
relationship between having a post-secondary education and literacy scores, 
when the “Age” variable equals 0. In other words, it shows the distance between 
the two regression lines (for people with/without a post-secondary education) for 
people who are aged 40, since a “0” value on the age variable corresponds to age 
40. Finally, the slope coefficient of the interaction variable shows how the pre-
dicted relationship between age and literacy scores is different for people with a 
post-secondary education than for those without. In practice, the slope coefficient 
of the interaction variable is added to the slope coefficient of the “Age” variable 
for people who have a post-secondary education when predicting literacy scores. 

It is easiest to understand how interaction variables work by creating regres-
sion prediction equations for people of different ages and with different levels of 
education. The results can then be plotted to show how the slopes of the regres-
sion lines differ because of the coefficient of the interaction variable. The prediction 
equation for the regression shown in Table 14.5 is similar to that for the regression 
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in Table 14.3, although the coefficients are slightly different, and the interaction 
variable is added to the end:

( ) ( )
( )

( )= + − +

+ ×

Predicted literacy score

age centred has post secondary education

age centred has post secondary education

   

270.01 0.80   17.47   -  

0.19         -    

For people without a post-secondary education, the value on the post-secondary 
education variable is “0”, and the value on the interaction variable is also “0” (since any 
age multiplied by 0 equals 0). So for a 16-year-old without a post-secondary education: 

( )( ) ( ) ( )= + − − + +Predicted literacy score    270.01 0.80 24 17.47 0 0.19 0

= +270.01 19.20

= 289.21

For a 40-year-old without a post-secondary education: 

( )( ) ( ) ( )= + − + +Predicted literacy score    270.01 0.80 0 17.47 0 0.19 0

= 270.01

And for a 65-year-old without a post-secondary education: 

( )( ) ( ) ( )= + − + +Predicted literacy score    270.01 0.80 25 17.47 0 0.19 0

( )= + −270.01 20.00

= 250.01

For people without a post-secondary education, the predicted literacy scores 
and, thus, the slope of the regression line are determined entirely by the coefficient 
of the “Age” variable. 

Now let’s find the predicted literacy scores for people at the same three ages 
(16, 40, and 65) who have a post-secondary education. This time, the value on the 
post-secondary education variable is “1”, and the value on the interaction variable 
is the same as the value on the age variable (since any age multiplied by 1 is equal to 
that age). So for a 16-year-old with a post-secondary education: 

( )( ) ( ) ( )= + − − + + −Predicted literacy score    270.01 0.80 24 17.47 1 0.19 24

( )= + + + −270.01 19.20 17.47 4.56

= 302.12

For a 40-year-old with a post-secondary education: 

( )( ) ( ) ( )= + − + +Predicted literacy score    270.01 0.80 0 17.47 1 0.19 0

= +270.01 17.47

= 287.48

= + + +y a b x b x b x xˆ ( )1 1 2 2 3 1 2
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And for a 65-year-old with a post-secondary education: 

( )( ) ( ) ( )= + − + +Predicted literacy score    270.01 0.80 25 17.47 1 0.19 25

( )= + − + +270.01 20.00 17.47 4.75

= 272.23

For people who are 40 years old (who have a “0” value on the age variable be-
cause of centring), the predicted literacy score for those with a post-secondary 
education is exactly 17.47 points higher than the predicted literacy score for those 
without a post-secondary education. That is, the slope coefficient of the post-sec-
ondary education variable shows the predicted relationship between having a 
post-secondary education and literacy scores, when the age variable equals 0.

For people at other ages, the 17.47-point difference associated with having a 
post-secondary education is still incorporated into the prediction, but the predicted 
literacy scores are also affected by the size of the slope coefficient of the interaction 
variable. So, the difference between the predicted literacy scores of 16-year-olds 
without a post-secondary education and 16-year-olds with a post-secondary edu-
cation is determined by two elements: (1) the contribution of the slope coefficient of 
the post-secondary education variable, which adds 17.47 points for people at every 
age, and (2) the contribution of the slope coefficient of the interaction variable, 
which changes depending on people’s age and subtracts 4.56 points for 16-year-olds 
(since 0.19 x −24 = −4.56). Similarly, the difference between the predicted literacy 
scores of 65-year-olds without a post-secondary education and 65-year-olds with 
a post-secondary education is determined by the coefficient of the post-secondary 
education variable (which adds 17.47 points for people at every age) and the con-
tribution of the coefficient of the interaction variable, which adds 4.75 points for 
65-year-olds (0.19 x 25 = 4.75).

Based on these calculations, among people without a post-secondary educa-
tion, 16-year-olds are predicted to have literacy scores that are 39 points higher 
than 65-year-olds. In contrast, among people with a post-secondary education, 
16-year-olds are predicted to have literacy scores that are only 30 points higher 
than 65-year-olds. In other words, the decrease in literacy scores associated with 
each older age cohort is smaller for people with a post-secondary education than 
for people without a post-secondary education. 

Figure 14.2 shows the predicted relationship between age and literacy scores 
for people with and without a post-secondary education. Because of the interaction 
variable, the slopes of the two lines are different; that is, they are no longer parallel 
to one another (as in Figure 14.1). The different slopes show that the predicted in-
fluence of having a post-secondary education on literacy scores is smaller for people 
in younger age cohorts than for people in older cohorts. In other words, age cohort 
and level of education appear to jointly influence literacy scores. 

This example illustrates how to interpret interactions between a ratio-level 
variable (age) and a categorical variable with only two attributes (has/does not have 
a post-secondary education). Interaction variables can also be used to predict more 
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complex relationships. For instance, instead of dividing level of education into only 
two groups, I can retain five levels of education (collapsing the two university-level 
categories). To do so, I create five dummy variables to capture the education vari-
able and use four of them as independent variables in a regression. (The omitted 
dummy variable becomes the reference group.) Four interaction variables are then 
needed to capture the interaction between age and education: one to correspond 
with each of the education dummy variables in the regression. Each interaction 
variable is created by multiplying the value on the age variable by the value on the 
corresponding education dummy variable. 

Incorporating more detailed information about people’s level of education 
results in a regression with nine independent variables: the age variable, the four 
education dummy variables, and the four corresponding interaction variables. 
Table 14.6 shows the results of this regression. But when regressions use more 
than one interaction variable, the predictions are much easier to interpret when 
they are graphed. In Figure 14.3, the slopes of the regression lines suggest that 
dividing people’s highest educational credentials into three groups might be best 
when investigating the relationship between age cohort and literacy scores. People 
with less than a high school education are predicted to have a relatively steep 
decrease in literacy scores in older age cohorts. People with a university degree 
are predicted to have much less decrease in literacy scores in older age cohorts. 
And, finally, people with a high school diploma; people with an apprenticeship, 
upgrading, or trade certificate; and people with a college/CÉGEP or university dip-
loma or certificate are predicted to have a similar decrease in literacy scores in 

Figure 14.2  Literacy Scores Predicted by the Regression in Table 14.5

Source: Author generated; Calculated using data from Statistics Canada, 2017.

A post-secondary education is 
associated with a 13 point 
difference in the predicted 
literacy score for 16-year-olds . . . 

. . .  and a 22 point 
difference in the predicted 
literacy score for 65-year- 

olds. 

250

260

270

280

290

300

310

16 20 25 30 35 40 45 50 55 60 65

Li
te

ra
cy

 s
ca

le
 s

co
re

Age (in years)

No post-secondary education Has post-secondary education

 Level 2

 Level 3



16

noa15214_ch14_001-040.indd  16� 01/11/18  09:33 PM

PART IV  |  More Regression Modelling Techniques

older age cohorts. In other words, the slopes for these three groups are similar. 
Overall, these results suggest that the influence of age cohort on literacy scores is 
moderated by education, with three unique interactions or joint relationships: one 
for people with less than a high school education, one for people with a university 
degree, and one for everyone with a level of education between these two. This 
type of analysis helps to illustrate the complex interactions between age cohort, 
educational credentials, and literacy scores. 

Interaction variables can also be used to capture the joint influence of two cat-
egorical variables. To do this, a researcher first creates dummy variables for each 
categorical variable and then uses those dummy variables to create a series of inter-
action variables that capture all of the possible combinations of attributes. Research-
ers also sometimes investigate the joint influence of two ratio-level variables. To do 
this, they simply multiply the values on the two ratio-level variables to create the 
interaction variable. Unfortunately, the slope coefficient of an interaction variable 
created using two ratio-level variables is harder to interpret and to display visually. 

Overall, interaction variables help researchers to model more complex rela-
tionships between variables, by showing how two independent variables are jointly 
related to a dependent variable. Many social science researchers highlight the im-
portance of intersectionality or intersectional identities for understanding people’s 
experiences. Interaction variables allow quantitative social scientists to incorporate 
an understanding of intersectionality in regression models. But because the slope 
coefficients of interaction variables can be challenging to interpret and explain, 
most researchers use them sparingly in regression. Researchers typically present 

Table 14.6  Results of a Multiple Linear Regression with Nine Independent Variables (Four Interaction Variables)

Dependent variable: Literacy scale score (n = 26,653)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 276.94* –

Age (in years, centred on 40) −0.59* −0.16

Highest educational credential (ref: high school diploma or equivalent)

	 Less than high school −17.38* −0.25

	 Apprenticeship, upgrading, or trade certificate 3.48* 0.05

	 College/CÉGEP or university diploma/certificate 7.55* 0.12

	 University bachelor’s degree or higher 17.45* 0.30

Age x education interaction variables

	 Age (centred) x Less than high school −0.49* −0.07

	 Age (centred) x Apprenticeship, upgrading, or trade certificate 0.00 0.00

	 Age (centred) x College/CÉGEP or university diploma/certificate −0.11 −0.01

	 Age (centred) x University bachelor’s degree or higher 0.12 0.01

Adjusted R2 0.21
* Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.
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Figure 14.3  Literacy Scores Predicted by the Regression in Table 14.6

Source: Author generated; Calculated using data from Statistics Canada, 2017.
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regression results related to interaction variables using graphs because the slope 
coefficients alone can be difficult to meaningfully describe. 

Statistical Significance Tests When Interaction  
Variables Are Used
You just learned how the interpretation of slope coefficients changes when regres-
sions use interaction variables as independent variables. Because an interaction 
variable changes what the slope coefficients show, it also changes what tests of  
statistical significance indicate. 

Recall that in the regression shown in Table 14.5, the slope coefficient of the 
“Age” variable shows the predicted relationship between age and literacy scores but 
only when the post-secondary education variable equals 0. In other words, the slope 
coefficient of the “Age” variable shows the predicted relationship between age and 
literacy scores for people without a post-secondary education. Similarly, the test of 
statistical significance shows the likelihood of randomly selecting a sample with 
this observed relationship, or one of greater magnitude, if no relationship exists be-
tween age and literacy scores in the population of people without a post-secondary 
education. In other words, the test of statistical significance no longer shows the 
likelihood of selecting this sample if no relationship exists between age and literacy 
scores in the population overall. Instead, it shows the likelihood of selecting this 



18

noa15214_ch14_001-040.indd  18� 01/11/18  09:33 PM

PART IV  |  More Regression Modelling Techniques

sample if no relationship exists between these two variables in the population of 
people without a post-secondary education. 

Recall also that the slope coefficient of the “Has a post-secondary educa-
tional credential” variable shows the predicted relationship between having a 
post-secondary education and literacy scores, when the age variable equals 0 (which 
represents people aged 40). As a result, the test of statistical significance shows the 
likelihood of randomly selecting a sample with the observed relationship, or one 
of greater magnitude, if no relationship exists between having a post-secondary 
education and literacy scores in the population of people aged 40. 

When an interaction variable is used as an independent variable, the regression 
slope coefficients and the associated significance tests for the independent variables 
used to create that interaction variable no longer refer to the overall relationship 
between each independent variable and the dependent variable. Instead, the slope 
coefficients and the associated significance tests refer to the partial relationship be-
tween the independent variable and the dependent variable, for a group or condi-
tion that is defined by another variable. Statisticians sometimes refer to this as a 
conditional relationship.

The interpretation of the statistical significance test associated with the slope 
coefficient of the interaction variable is closer to the typical interpretation of a sig-
nificance test for a regression slope coefficient. The test of statistical significance 
associated with the slope coefficient of an interaction variable shows the probability 
of randomly selecting a sample with the observed relationship, or one of greater 
magnitude, if there is no joint relationship between the variables used to create the 
interaction variable and the dependent variable in the population. In other words, 
when an interaction variable is statistically significant, researchers are relatively 
confident that, in the population, the relationship between the dependent variable 
and one of the variables in the interaction variable differs depending on the value 
on the other variable(s) used to create the interaction variable. 

How Does “Readiness to Learn” Affect Literacy Skills?

Original research: Smith, M. Cecil, Amy D. Rose, Jovita Ross-Gordon, and Thomas J. Smith. 

2015. “Adults’ Readiness to Learn as a Predictor of Literacy Skills.” American Institutes for 

Research-PIAAC. 

In this “Statistics in Use” box, I describe the results of a study that uses inter-
action variables as independent variables in a multiple linear regression. The 
researchers were interested in finding out whether adults’ “readiness to learn” 
affected their literacy skills and the use of those skills. The data were taken from 
the 2013 PIAAC Survey of Adult Skills collected in the United States. A total of 
5,010 adults between the ages of 15 and 65 completed the survey.

Statistics in Use
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“Readiness to learn” (RtL) was defined as adults’ “propensity to learn new 
things, relate these knowledge and skills to existing knowledge and life situa-
tions, and engage in problem solving and information-seeking behaviour” (p. 3). 
Each person was assigned a readiness-to-learn score, based on their answers to 
a series of questions about learning new things and linking information together. 
The researchers hypothesized that readiness to learn influences the relationship 
between people’s demographic characteristics (gender, age, work experience, 
and education) and their literacy skills. To test this hypothesis, they developed a 
multiple linear regression model, with literacy scores as the dependent variable. 
Some of the regression results are shown in Table 14.7.

Table 14.7  Moderating Effects of Readiness to Learn on the Relationship 
between Selected Predictors and Literacy Scores  

Outcome Effect df   β  SE t

Literacy 
(R2 = .35) Readiness to Learn 1 0.03 0.02 1.52

Gender (female) 1 0.01 0.02 0.54

Age (5-year increments) 1 –0.35 0.03 –10.56***

Work experience (in years) 1 0.21 0.04 5.73***

Education (in years) 1 0.55 0.01 37.43***

RtL x Gender 1 0.03 0.02 1.60

RtL x Age 1 –0.07 0.03 –2.50*

RtL x Work experience 1 0.03 0.03 1.00

RtL x Education 1 –0.04 0.02 –2.31*
Note: *p < 0.05, **p <0.01, ***p < 0.001, dferror = 1,864

Source: Excerpt from Smith et al. 2015, 26.

Based on these regression results, the researchers conclude that people’s 
readiness to learn (RtL) moderates the relationship between age and literacy 
and the relationship between education and literacy. They note that “specifically, 
as RtL increased, the effects of age and educational level on [literacy] skills 
outcomes decreased. Equivalently, at low educational levels (or younger ages), 
the effect of RtL on skill levels was more pronounced than at high educational 
levels (or older ages).” To better illustrate the results, they present the graph in 
Figure 14.4, which shows that for people with low education, readiness to learn 
is related to literacy skills, but for people with high education, readiness to learn 
has a weaker relationship with literacy skills. 

In a regression that does not account for the interactions between  
readiness to learn and demographic characteristics, readiness to learn is a sta-
tistically significant predictor of literacy levels, although the relationship between 
readiness to learn and literacy is weaker than the relationship between years of 
education and literacy, and between age and literacy. But when the interactions 
between readiness to learn and demographic characteristics are considered, 

Continued
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Using Linear Regression to Predict  
Curvilinear Relationships 
So far, you have learned how to use linear regression to predict straight-line rela-
tionships between one or more independent variables and a dependent variable. But 
linear regression can also be used to predict a curvilinear (or curved) relationship 
between an independent variable and a dependent variable. This is done by incor-
porating a quadratic variable, or a quadratic term (which is the same thing as a 
squared variable or a squared term), into a linear regression. Whenever you see a 
linear regression that uses a quadratic or squared independent variable, it indicates 
that the researcher thinks that the relationship between that variable and the de-
pendent variable is curvilinear instead of linear. For instance, age is often related to 
things in a curvilinear way: there are many characteristics that generally improve 

curvilinear relationship Occurs 
when the line of best fit between 
two variables is curved, not straight.

quadratic variable Created by 
squaring the value on a ratio-level 
variable for every case.
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Figure 14.4  The Moderating Effect of Readiness to Learn (RtL) on the 
Relationship between Educational Level and Literacy Skill Level

Source: Smith et al. 2015, 31.

the researchers show that “although readiness to learn mediates some of the 
effects of education on skill level, this mediation is partial—that is, education 
still exerts considerable direct effect on skills. Therefore, while readiness to 
learn is a part of the overall picture of adults’ literacy skills, schooling is much 
more important” (p. 11). Nonetheless, the researchers assert that increasing 
people’s readiness to learn can potentially reduce some of the differences in 
literacy skills between people with lower education and people with higher edu-
cation. As a result, they recommend implementing adult education policies and 
practices designed to enhance the readiness to learn of low-education workers 
in order to enhance their career prospects (p. 13). 
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as we grow older, and then reach a point where they begin to decline. This applies to 
many biological characteristics (such as motor skills), psychological characteristics 
(such as memory), and social characteristics (such as income). It is only sensible 
to predict curvilinear relationships between ratio-level independent variables and 
the ratio-level dependent variable in a regression; because categorical independent 
variables are incorporated into regressions using dummy variables, it doesn’t make 
sense to square them.

To predict a curvilinear relationship between a ratio-level independent vari-
able and the dependent variable in a linear regression, two versions of the in-
dependent variable are used in the regression: the original version of the variable 
(called the linear variable) and a quadratic version of the variable. The slope co-
efficient of the linear version of the independent variable indicates the angle of the 
predicted straight-line relationship between the independent variable and the de-
pendent variable. The slope coefficient of the quadratic version of the variable indi-
cates the direction and shape of the predicted curvilinear relationship between the 
independent variable and the dependent variable. 

Let’s start by using a hypothetical example to illustrate how quadratic variables 
predict curvilinear relationships. To create a quadratic variable, researchers simply 
square the value on the original variable for each case (multiply the value by itself). 
The values on the quadratic variable grow exponentially as a result of the squaring. 
Table 14.8 shows the values on a hypothetical original variable and the quadratic 
variable that corresponds to it. 

A linear regression that uses both the linear and the quadratic version of this 
independent variable produces a constant coefficient and two slope coefficients: 
one for the linear version of the variable and one for the quadratic version of the 

Table 14.8  The Values on Linear and Quadratic Versions  
of a Single Independent Variable (Hypothetical Data)

Person

Original 
Linear 

Variable
(x)

Quadratic 
Variable

(x2)

Mandeep 0 0

Mikaela 10 100

Ishaan 20 400

Noam 30 900

Althea 40 1,600

Christos 50 2,500

Luka 60 3,600

Katerina 70 4,900

Fatima 80 6,400

Joaquin 90 8,100

Zeynep 100 10,000
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variable. If they are the only independent variables used in the regression, the pre-
diction equation is:

( ) ( )( ) ( )

( )= + +

= + +

y a b x b x

Predicted value on the DV

a b linear version of IV b quadratic version of IV

ˆ

       

       

1 2
2

1 2

Notice that the linear regression prediction equation has not changed—the only 
difference is that the second independent variable is just the square of the first in-
dependent variable, instead of being a completely different independent variable. To 
illustrate how a curvilinear relationship is predicted, let’s imagine that the regres-
sion constant coefficient is 0, the slope coefficient of the original (linear) independent 
variable is 5, and the slope coefficient of the corresponding quadratic variable is 10. 
In this hypothetical situation, the regression prediction equation becomes: 

( ) ( )

( )( )( ) ( )

( ) ( )

= + +

= + +

y x x

Predicted value on the DV

linear version of IV quadratic version of IV

ˆ 0 5 10

       

0 5     10    

2

( ) ( )

( )( )( ) ( )

( ) ( )

= + +

= + +

y x x

Predicted value on the DV

linear version of IV quadratic version of IV

ˆ 0 5 10

       

0 5     10    

2

Table 14.9 illustrates what happens when the values on the two versions of 
the independent variable—the original linear version and the quadratic version—
shown in Table 14.8 are substituted into this regression prediction equation. 

Because of the exponential growth in the values on the quadratic variable, the 
predicted values on the dependent variable no longer correspond to a straight-line 

Table 14.9  Using Linear and Quadratic Versions of an Independent Variable  
in a Hypothetical Regression Prediction Equation (Hypothetical Data)

Original 
Linear 

Variable
(x)

Quadratic Variable
(x2)

Prediction Equation
0 + (5)(x) + (10)(x2) =

Predicted Value on the 
Dependent Variable

(ŷ)

0 0 0 + (5)(0) + (10)(0) = 0

10 100 0 + (5)(10) + (10)(100) = 1,050

20 400 0 + (5)(20) + (10)(400) = 4,100

30 900 0 + (5)(30) + (10)(900) = 9,150

40 1,600 0 + (5)(40) + (10)(1,600) = 16,200

50 2,500 0 + (5)(50) + (10)(2,500) = 25,250

60 3,600 0 + (5)(60) + (10)(3,600) = 36,300

70 4,900 0 + (5)(70) + (10)(4,900) = 49,350

80 6,400 0 + (5)(80) + (10)(6,400) = 64,400

90 8,100 0 + (5)(90) + (10)(8,100) = 81,450

100 10,000 0 + (5)(100) + (10)(10,000) = 100,500
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relationship. When the predicted relationship between the original independent 
variable and the dependent variable is graphed, the curved shape becomes appar-
ent. (See Figure 14.5.) This is how quadratic variables enable researchers to use 
linear regression to predict curvilinear relationships. 

As with interaction variables, interpreting the slope coefficients of quadratic 
variables is difficult without using graphs. But it’s possible to get a general idea 
about the shape of a relationship by looking at the sign of the slope coefficient of a 
quadratic variable, along with the sign of the slope coefficient of the corresponding 
linear variable. The top row of Figure 14.6 shows how to interpret the slope coeffi-
cient of a quadratic variable when the slope coefficient of the corresponding linear 
variable is positive. The bottom row of Figure 14.6 shows how to interpret the slope 
coefficient of a quadratic variable when the slope coefficient of the corresponding 
linear variable is negative. When the slope coefficient of a quadratic variable is 
positive, the predicted relationship has an upward curve, with the tails of the line 
moving up and away from the straight line. When the slope coefficient of a quad-
ratic variable is negative, the predicted relationship has a downward curve, with 
the tails dropping further below the straight line. The size of the slope coefficient 
of a quadratic variable indicates how quickly or slowly the regression line curves 
away from the straight line. Although in Figure 14.6 each curved line overlaps the 
straight line at 0, this will not always occur. The best way to assess the shape and 
magnitude of a curvilinear relationship is to use the regression coefficients to cal-
culate the predicted value on the dependent variable for several plausible values on 
the independent variable and to graph the relationship, as in Figure 14.5.

Let’s return to the Canadian PIAAC data to investigate whether the relationship 
between age cohort and literacy scores is linear or curvilinear. Table 14.10 shows 
the results of a linear regression that predicts literacy scores using people’s age. 
To  assess the possibility of a curvilinear relationship, two versions of the “Age” 
variable are used as independent variables: a linear version and a quadratic version. 

Figure 14.5  The Predicted Relationship between the Independent Variable  
and the Dependent Variable in Table 14.9 (Hypothetical Data)
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As in the other examples in this chapter, the linear version of the “Age” variable 
was centred on 40 before the variable was squared. Centring variables is especially 
useful when researchers are modelling curvilinear relationships because doing so 
helps to avoid collinearity problems. 

The constant coefficient of the regression shown in Table 14.10 indicates that 
the predicted literacy score of people who are aged 40 is 279. Both the linear version 
of the “Age” variable and the quadratic version of the “Age” variable have negative 
slope coefficients, so the ends of the curve will be pointing downwards, as in the 
bottom right panel of Figure 14.6. In other words, literacy scores are predicted to 
increase with each older age cohort, up to a certain point, and then they are pre-
dicted to decrease. 

Figure 14.7 shows the predicted relationship between age cohort and lit-
eracy scores from two different linear regressions. The straight blue line shows 

Figure 14.6  A Guide to Interpreting Slope Coefficients When a Linear Regression Uses a Quadratic Variable 
(Hypothetical Data)

–2 –1 0 1 2 –2 –1 –10 1 2 -–2 0 1 2

–2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2

A positive slope coef�cient
for a linear variable . . . 

. . .  with a positive slope coef�cient
for a quadratic variable

. . .  with a negative slope coef�cient
for a quadratic variable

A negative slope coef�cient
for a linear variable . . . 

. . .  with a positive slope coef�cient
for a quadratic variable

. . .  with a negative slope coef�cient
for a quadratic variable



25

noa15214_ch14_001-040.indd  25� 01/11/18  09:33 PM

14   |  Manipulating Independent Variables in Linear Regression

Table 14.10  Results of a Multiple Linear Regression with Two Independent 
Variables (One Linear and One Quadratic)

Dependent variable: Literacy scale score (n = 26,653)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 279.23* --

Age (in years, centred on 40) −0.51* −0.14

Age (in years, centred on 40), squared −0.03* −0.10

Adjusted R2 0.03
* Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.

the predicted relationship between age and literacy scores when only the linear 
“Age” variable is used as an independent variable in the regression. (These re-
gression coefficients are not shown.) The linear relationship predicted by the blue 
line suggests that the youngest age cohort has the highest literacy scores and that 
literacy scores decrease steadily in each older age cohort. This prediction doesn’t 
quite match with how learning is organized in our society: it’s unlikely that teens 
have higher literacy scores than people who are in their early twenties, some of 
whom are engaged in post-secondary education. The curved red line shows the 
predicted relationship between age and literacy scores when both a linear “Age” 
variable and a quadratic “Age” variable are used as independent variables in the 
regression (the  regression shown in Table 14.10). This predicted relationship 
clearly fits better with our understanding of the relationship between age and 

Figure 14.7  Predicted Linear and Curvilinear Relationships between Age and 
Literacy Scores

Source: Author generated; Calculated using data from Statistics Canada, 2017.
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learning, including literacy. The curved red line suggests that there is a positive 
relationship between literacy scores and age, up until the age cohort who are 
in their early thirties. The apex of the curve in the early thirties corresponds to 
the years when many people are most attentive to formal education and special-
ized job training, which might be the reason for the high literacy scores in these 
age cohorts. For the age cohorts from the mid-thirties onward, literacy scores 
are predicted to be lower in each older cohort. As described earlier, this may 
reflect the different educational expectations and experiences of people in older 
age cohorts. It may also indicate that literacy skills have deteriorated in older age 
cohorts, as a result of the length of time away from formal schooling or other 
educational activities. 

Quadratic variables allow researchers to use regression to model relation-
ships that more accurately reflect real-world processes because they are no longer 
restricted to predicting straight-line relationships, even in the context of linear 
regression. Curvilinear relationships capture situations where the relationship be-
tween two variables is positive at some values of the independent variable and nega-
tive at other values of the independent variable. 

Using quadratic variables to predict curvilinear relationships can be combined 
with other regression modelling techniques. For instance, given the analyses ear-
lier in this chapter, it’s possible that the curvilinear relationship between age and 
literacy scores is also related to education. To investigate this possibility, I can use 
both quadratic and interaction variables as independent variables in a regression. 
For example, the regression shown in Table 14.10 can be refined by adding a vari-
able (or variables) for people’s highest educational credential and variables for the 
interaction between people’s highest educational credential and their age. For sim-
plicity, educational credentials are once again divided into only two groups: people 
with a post-secondary education and those without, captured in a dummy variable. 
Then, two interaction variables are created: one that multiplies the linear “Age” 
variable by the “Has a post-secondary educational credential” dummy variable, 
and one that multiplies the quadratic “Age” variable by the “Has a post-secondary 
educational credential” dummy variable. Thus, the multiple linear regression pre-
dicting literacy scores has five independent variables: the dummy variable for “Has 
a post-secondary educational credential,” two “Age” variables (one linear and one 
quadratic), and two interaction variables (the “Has a post-secondary educational 
credential” dummy variable multiplied by the linear “Age” variable and the “Has a 
post-secondary educational credential” multiplied by the quadratic “Age” variable). 
Since the regression coefficients are difficult to interpret on their own, the results 
are graphed in Figure 14.8. 

Figure 14.8 shows the predicted curvilinear relationship between age and 
literacy scores for people who have a post-secondary education and people who 
do not. For people who do not have a post-secondary education, each older age 
cohort (beyond 16) is predicted to have a lower literacy score. The relationship is 
monotonic—that is, it always moves in the same direction, even though it is not 
linear. In contrast, for people with a post-secondary education, literacy scores are 
predicted to be positively related to age for the cohorts between the mid-teens and 
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the mid-twenties, and then level off. Among people with a post-secondary educa-
tion, after age 26 each older age cohort is then predicted to have a lower literacy 
score. In other words, this relationship is not monotonic—it changes direction, 
with the curve peaking in the mid-twenties. 

These regression results make it clear that the relationship between age and 
literacy scores is both curvilinear and influenced by people’s level of education. 
The lower literacy scores among older age cohorts can partly be attributed to their 
lower educational credentials. But, even when having a post-secondary educational 
credential is accounted for, people in age cohorts beyond 35 have lower literacy 
skills than their younger counterparts. Recall that most jobs in Canada require 
Level 3 literacy skills. Among those without a post-secondary education, people 
aged 34 or older are predicted to have literacy scores that are below this cut-off. 
In contrast, among those with a post-secondary education, only people aged 57 or 
older are predicted to have literacy scores that are below this cut-off. Overall, these 
findings reinforce the importance of post-secondary education in developing and 
maintaining a highly literate workforce. 

Transforming Skewed Variables 
Researchers also sometimes transform independent variables in order to create 
better-fitting regression models—that is, models that explain more of the varia-
tion in the dependent variable or models with smaller residuals (or smaller errors). 
A transformation refers to replacing the values on a variable with values that are a 

transformation  Replacing  the 
values on a variable with values 
that are a mathematical function 
of the original value.

Figure 14.8  Literacy Scores Predicted by a Multiple Linear Regression That Uses 
Both a Quadratic Variable and Interaction Variables

Source: Author generated; Calculated using data from Statistics Canada, 2017.
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mathematical function of the original value. You are probably already familiar with 
simple transformations—you do this whenever you convert your weight in pounds 
to your weight in kilograms or your height in feet and inches to your height in centi-
metres. The actual thing that you are measuring (weight or height) doesn’t change 
when you transform it; only the units of measurement change. Ratio-level variables 
can be transformed; however, because nominal- and ordinal-level variables have 
arbitrary values, it doesn’t make sense to mathematically manipulate them. 

When a variable undergoes a linear transformation, both the relative se-
quence of cases (from smallest to largest) and the relative distance between the cases 
remain the same in the new variable. But in the context of regression, non-linear 
transformations are often more useful for improving the fit of a model. In a non-
linear transformation the relative sequence of cases (from smallest to largest) re-
mains the same, but the relative distance between the cases changes. Non-linear 
transformations are typically used when a researcher wants to use a highly skewed 
variable as an independent variable in a regression. When an independent vari-
able (or a dependent variable) is highly skewed, the regression residuals are often 
also skewed, which violates the regression assumption that the errors are normally 
distributed. Independent variables that are highly skewed also typically result in 
some cases having very large regression residuals or errors. In these circumstances, 
transforming the skewed variable using a non-linear transformation can help to 
make the distribution of regression residuals more normal and improve the regres-
sion predictions overall. 

For variables that are right-skewed—that is, variables with a distribution that 
has a long tail trailing off to the right—the most common non-linear transform-
ation that researchers use is called a logarithmic transformation, or a log trans-
formation. The first step in a logarithmic transformation is to express each value on 
the original variable as a common base number raised to an exponent. Any positive 
number can be used as the common base number, but social scientists regularly 
use either base 2 or base 10. A logarithmic transformation using base 2 is denoted 
as log2 and a logarithmic transformation using base 10 is denoted as log10. Then, 
the transformed variable is created by assigning each case the value of the expo-
nent that is produced when the original value on the variable is represented as the 
common base number raised to an exponent. 

Let’s illustrate this process using a base 2 transformation. A case with the value 
“2” on the original variable is assigned the value “1” on the transformed variable 
because 2 is equal to 21. Similarly, a case with the value “4” on the original variable 
is assigned the value “2” on the transformed variable, because 4 is equal to 22, and a 
case with the value “8” on the original variable is assigned the value “3” on the trans-
formed variable, because 8 is equal to 23. (See Table 14.11.) But exponents don’t need 
to be whole numbers. For instance, a case with the value “3” on the original variable 
is assigned the value “1.58” on the transformed variable because 3 is equal to 21.58. 

When a variable is log-transformed using base 2, each one-unit increase in the 
transformed variable is equivalent to doubling the original value. So, in the trans-
formed variable shown in the final column of Table 14.11, Amira’s value is 1 unit 
higher than Alan’s value. Looking at the values on the original variable, you can see 

linear transformation  A transform-
ation where the relative sequence 
of cases and the relative distance 
between the cases remains the 
same in the original variable and 
the transformed variable.

non-linear transformation  A trans-
formation where the relative se-
quence of cases remains the same 
in the original variable and the trans-
formed variable, but the relative dis-
tance between the cases changes.

logarithmic transformation  A non- 
linear transformation where each 
value on the original variable is 
expressed as a common base 
number raised to an exponent, and 
that exponent is assigned as the 
value on the transformed variable.
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that Amira has double the value that Alan does (8 compared to 4). Understanding 
what a one-unit increase in the transformed variable represents will help you to 
interpret slope coefficients when transformed variables are used as independent 
variables in a linear regression. 

Figure 14.9 shows how a non-linear log transformation compares to a linear 
transformation. Both graphs in Figure 14.9 plot the values on a hypothetical ori-
ginal variable on the horizontal axis (x-axis), and the values on a corresponding 
transformed variable on the vertical axis (y-axis). The left panel shows a simple 
linear transformation of the original variable: each original value is multiplied by 
two. In the linear-transformed variable, shown on the vertical axis, the cases stay 
in the same relative order (smallest to largest) as in the original variable. The rela-
tive distance (height) between the cases also stays the same. A one-unit increase in 
the original variable is equivalent to a two-unit increase in the linear-transformed 
variable for every case. The right panel of Figure 14.9 shows a log2 transformation 
of the original variable that corresponds to Table 14.11. In the log2 transformed 
variable, the cases stay in the same relative order (smallest to largest) as in the ori-
ginal variable. But the relative distance (height) between the cases changes in the 
log2 transformed variable. The higher the value on the original variable, the smaller 
the height difference between the cases in the transformed variable. The curved 
pattern of the dots shows that the transformation is non-linear—that is, it is not a 
straight line. 

When a variable is log-transformed, cases with low values on the original vari-
able are moved farther apart in the new variable, and cases with high values on 
the original variable are moved closer together in the new variable. This is why log 
transformations are useful for variables that are right-skewed—they move the cases 
with high values in the long tail on the right closer together, and move the cases 
with the low values that are clustered together on the left farther apart.

Table 14.11  Log-Transforming a Variable Using Base 2 (Hypothetical Data)

Person
Value on Original 

Variable
Value in Base 2 
Exponent Form

Value on the 
Transformed 

Variable (log2)

Asmita 1 20 0

Parv 2 21 1

Terry 3 21.58 1.58

Alan 4 22 2

Nuvdeep 5 22.32 2.32

Josh 6 22.58 2.58

Chloe 7 22.81 2.81

Amira 8 23 3

Becky 9 23.17 3.17

Liam 10 23.32 3.32
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An example from the PIAAC data is useful for illustrating how log transforma-
tions work. The dataset includes a variable that captures the number of hours people 
spend participating in non-formal education each year (people who did not par-
ticipate in any non-formal education in the past 12 months are excluded from the 
analysis). Non-formal educational activities are defined as organized and sustained 
educational activities that are outside the formal “ladder” system of schooling. They 
can include educational programs to support adult literacy, life skills, work skills, 
cultural interests, or basic education for people who are out of school. Types of 
non-formal education include open and distance education, on-the-job training 
sessions, as well as other types of seminars, workshops, courses, or private lessons 
(PIAAC 2011). The distribution of time spent participating in non-formal education 
is right-skewed. (See the left panel of Figure 14.10.) About a third of people spend 
less than 20 hours participating in non-formal education each year. But the long tail 
on the right of the distribution shows that there are a few people who participate in 
hundreds of hours of non-formal education each year. The taller bar at 800 hours re-
flects the fact that this variable is top-coded. Everyone who would have been spread 
out over the values larger than 800 hours is clustered together at this value. The ori-
ginal variable capturing the amount of time spent participating in non-formal edu-
cation was log-transformed using base 2. The distribution of the log2-transformed 
variable is shown in the right panel of Figure 14.10. The same cases are shown, in 
the same relative order, but the distance between the cases is changed by the log 
transformation. As you can see, the log2-transformed variable is no longer highly 
skewed and is closer to being normally distributed. The centre of the distribution is 
at 5, which represents 25 or 32 hours participating in non-formal education. 

Log-transformed variables can be used as independent variables in a regres-
sion in the same way as any other ratio-level variable. They replace the original 

Figure 14.9  Comparing a Linear Transformation and a Non-Linear Transformation for the Same Variable  
(Hypothetical Data)
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variable in the regression: when a log-transformed variable is used as an independ-
ent variable, the original variable is omitted from the regression. The slope coeffi-
cients of log-transformed variables are interpreted in relation to the base of the log. 
For instance, when a variable is log-transformed to base 2, a one-unit increase in 
the transformed variable is equivalent to doubling the original value; therefore, 
the slope coefficient of the transformed variable shows the predicted change in the 
dependent variable that is associated with doubling the original value on the in-
dependent variable. 

Table 14.12 shows the results of a linear regression predicting literacy scores 
using the log2-transformed variable capturing hours spent participating in 
non-formal education. The constant coefficient indicates that people who spend 
one hour engaged in non-formal education each year are predicted to have a lit-
eracy score of 280. Recall that the constant coefficient shows the predicted value 
on the dependent variable when the independent variable equals 0. A “0” value on 
the log2-transformed independent variable represents people who spend 20 hours 
participating in non-formal education, and 20 is equal to 1. (Any base to the power 
of 0 is equal to 1.) This is why the constant coefficient shows the predicted value on 
the dependent variable for people who spend one hour participating in non-formal 
education each year. The slope coefficient shows that every doubling of hours spent 
participating in non-formal education is associated with an increase of 1.39 in 
people’s literacy scores. Notice that it is the percentage change in hours that mat-
ters, not the absolute change in hours. So, people who spend two hours participat-
ing in non-formal education each year are predicted to have a literacy score that is 
1.39 points higher than people who spend one hour participating in non-formal 
education: the one-hour difference represents a 100 per cent increase in time, or a 
doubling of time. But people who spend eight hours participating in non-formal 

Figure 14.10  The Distribution of Time Spent Participating in Non-Formal Education, Original Variable and log2-
Transformed Variable

Source: Author generated; Calculated using data from Statistics Canada, 2017.
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education each year are predicted to have a literacy score that is 1.39 points higher 
than people who spend four hours participating in non-formal education: the four-
hour difference also represents a 100 per cent increase in time, or a doubling of time. 

The very low adjusted R2 of this regression indicates that the number of hours 
spent participating in non-formal education does not explain much of the varia-
tion in literacy scores. In part, this is because this regression only includes people 
who reported spending at least some time participating in non-formal educa-
tion. Regardless of the base that is used, before any variable is log-transformed, 
all values must be above 0. It is not possible to represent “0” values or negative 
values in a log-transformed variable. People who spend zero hours participating 
in non-formal education do not have a value on the log-transformed variable and, 
thus, are excluded from this regression. 

When a variable is log-transformed to base 10, a one-unit increase in the trans-
formed variable is equivalent to a tenfold increase in the original value. When a 
log10 transformed variable is used as an independent variable in a regression, the 
slope coefficient of the transformed variable shows the predicted change in the de-
pendent variable that is associated with a tenfold increase in the original value on 
the independent variable. An example of a base 10 log transformation is shown in 
Table 14.13. Notice that values on the original variable between “0” and “1” become 
negative exponents when they are log-transformed. (This occurs for all bases.) 

Log-transformed variables can also be used as the dependent variable in a 
regression, although the interpretation of the slope coefficients becomes more 
complex. A discussion of how to interpret regression coefficients when a de-
pendent variable is log-transformed is beyond the scope of this book. But in 
Chapter 15 you’ll learn how log transformations are used in logistic regression, 
which is a type of regression that is used when the dependent variable is a di-
chotomous variable. 

So far, I have only described how to transform variables that are right-skewed. 
In social science data, right-skewed variables are far more common than left-
skewed variables. But left-skewed variables can also be transformed so that they 
are more normally distributed. Left-skewed variables are typically transformed by 
taking the square root (or the cube root) of the original variable. Interpreting the 
slope coefficients of variables that are transformed this way is more complex than 

Table 14.12  Results of a Simple Linear Regression with a Log-Transformed 
Independent Variable

Dependent variable: Literacy scale score (n = 12,969)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 280.47* —

Hours spent participating in non-formal 
education in past 12 months (log base 2) 1.39* 0.07

Adjusted R2 0.00
* Indicates that results are statistically significant at the p< 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.



14   |  Manipulating Independent Variables in Linear Regression 33

noa15214_ch14_001-040.indd  33� 01/11/18  09:33 PM

for log-transformed variables. Given how rarely this technique is used, I do not 
discuss it further here.

Since highly skewed variables can result in poor-fitting regression models, it’s 
important for researchers to examine the distribution of each of the variables in a 
regression as they build their model. For variables that are highly skewed, trans-
forming the variable so that the distribution becomes more normal can substan-
tially improve the regression predictions. 

Table 14.13  Log-Transforming a Variable Using Base 10 (Hypothetical Data)

Person
Value on the 

Original Variable
Value in Base 10 
Exponent Form

Value on the 
Transformed 

Variable (log10)

Aaron 0.1 10–1 −1

Emma 0.5 10–0.3 −0.3

Sohailia 1 100 0

Amanda 5 100.7 0.7

Millicent 10 101 1

Mike 50 101.7 1.7

Jeanette 100 102 2

Jacob 500 102.7 2.7

Sergio 1,000 103 3

Louisa 5,000 103.7 3.7

Ricardo 10,000 104 4

What You Have Learned

In this chapter, you learned several strategies for manipu-
lating independent variables in order to investigate more 
complex relationships and to improve the fit of a regres-
sion model. You learned how to use interaction variables 
to investigate how two independent variables jointly in-
fluence a dependent variable. You also learned how to use 
quadratic independent variables in a linear regression in 
order to predict curvilinear relationships. Finally, you 
learned how to transform skewed variables so that they 
can be used as independent variables in a linear regres-
sion without violating any distributional assumptions. 
Particular emphasis was placed on log transformations of 
right-skewed variables since these occur more often than 
left-skewed variables in social science data. 

The research focus of this chapter was adults’ lit-
eracy scores and how they are related to age cohort and 

level of education. An analysis of Canada’s PIAAC data 
shows that literacy scores are predicted to be the high-
est for adults between the ages of 25 and 40, and lower 
for people in both younger and older age cohorts. Most 
notably, education is predicted to be strongly related 
to literacy skills, both directly and indirectly. Directly, 
people with higher educational credentials are predicted 
to have higher literacy scores. Indirectly, the negative 
relationship between age and literacy scores is moder-
ated by people’s level of education; among people with 
a post-secondary education, older age cohorts have less 
of a decrease in literacy scores than among people with-
out a post-secondary education. This finding, along with 
the established link between literacy skills and income 
(Heisz, Notten, and Situ 2016), reinforces the long-term 
benefits of investing in a post-secondary education. 
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Check Your Understanding

Check to see if you understand the key concepts in this 
chapter by answering the following questions:

1.	 Why do researchers use interaction variables as in-
dependent variables in linear regression?

2.	 How does the interpretation of the slope coefficients 
change when an interaction variable is used as an in-
dependent variable in a linear regression?

3.	 Why do researchers use quadratic variables as in-
dependent variables in linear regression?

4.	 Why do researchers log-transform variables?
5.	 How does the interpretation of the constant co-

efficient and the slope coefficients change when a 
log-transformed variable is used as an independent 
variable in a linear regression?

Practice What You Have Learned 

Check to see if you can apply the key concepts in this 
chapter by answering the following questions. Keep two 
decimal places in any calculations. 

1.	 In “Practice What You Have Learned” in Chap-
ter 13, you interpreted a multiple linear regression 
model developed by a community agency to predict 
people’s charitable giving. It showed that two indi-
cators of community engagement—whether people 
volunteered their time in the past 12 months and 
whether they participate in religious activities/servi-
ces at least once a month—were both strongly related 
to the amount of money that people donated to char-
itable organizations. The agency’s research team de-
cides to investigate whether the relationship between 
participating in religious activities/services at least 
once a month and the total amount of money that 
people donated to charitable organizations is differ-
ent for people who volunteer and for people who do 
not volunteer. Table 14.14 shows a multiple linear 
regression that uses people’s volunteer status, their 
participation in religious activities/services, and a 
variable capturing the interaction between them 
to predict the total amount of money that people 
donated to charitable organizations in the past 12 
months. 

a.	 Explain what the unstandardized slope coeffi-
cient of the “Volunteered in the past 12 months” 
dummy variable shows.

b.	 Explain what the unstandardized slope coeffi-
cient of the “Participates in religious activities/
services once a month or more often” dummy 
variable shows. 

c.	 Explain what the unstandardized slope coeffi-
cient of the interaction variable shows. 

Table 14.14  Results of a Multiple Linear Regression 
with Three Independent Variables (One Interaction 
Variable)

Dependent variable: Total financial donations to 
charitable organizations ($) in the past 12 months  
(n = 13,556)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 163.98* —

Volunteered in the 
past 12 months

91.19* 0.069

Participates in 
religious activities/
services once 
a month or 
more often 

280.71* 0.186

Volunteered 
x religious 
participation 

321.00* 0.171

Adjusted R2 0.13
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.
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2.	 Using the information in Table 14.14:

a.	 Write out the regression prediction equation for 
people who volunteer but who do not partici-
pate in religious activities/services at least once 
a month. Then, calculate the result. 

b.	 Write out the regression prediction equation for 
people who participate in religious activities/
services at least once a month but who do not 
volunteer. Then, calculate the result. 

c.	 Write out the regression prediction equation for 
people who both volunteer and participate in re-
ligious activities/services at least once a month. 
Then, calculate the result.

3.	 The community agency’s research team is also in-
terested in understanding how the relationship be-
tween age and the total amount of money that people 
donate to charitable organizations is different for 
people who volunteer and for people who do not 
volunteer. Table 14.15 shows the results of a multiple 
linear regression that uses people’s age, their volun-
teer status, and a variable capturing the interaction 
between them to predict the amount donated to 
charitable organizations in the past 12 months. 

a.	 Explain what the unstandardized slope coeffi-
cient of the “Age” variable shows. 

b.	 Explain what the unstandardized slope coeffi-
cient of the “Volunteered in the past 12 months” 
dummy variable shows.

c.	 Explain what the unstandardized slope coeffi-
cient of the interaction variable shows. 

4.	 Using the information in Table 14.15: 

a.	 Calculate how much money a 20-year-old who 
volunteers is predicted to donate to charitable 
organizations in a 12-month period. Then, 
repeat the calculation for an 80-year-old who 
volunteers. Be sure to account for the centring 
of the age variable in your calculations.

b.	 Calculate how much money a 20-year-old who 
does not volunteer is predicted to donate to 
charitable organizations in a 12-month period. 
Then, repeat the calculation for an 80-year-old 
who does not volunteer.

c.	 Compare the influence of volunteering on 
people’s predicted donations to charitable 

Table 14.15  Results of a Multiple Linear Regression 
with Three Independent Variables (One Interaction 
Variable)

Dependent variable: Total financial donations to 
charitable organizations ($) in the past 12 months  
(n = 14,538)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 208.93* —

Age (in years, 
centred on 45)

4.24* 0.119

Volunteered in the 
past 12 months

257.65* 0.195

Age (in years, 
centred on 45) x 
volunteered

6.04* 0.107

Adjusted R2 0.07
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.

organizations for people who are age 20 and for 
people who are age 80. Is the relationship be-
tween volunteering and the amount of money 
donated to charitable organizations stronger for 
young people or older people? 

5.	 Using the information in Table 14.15: 

a.	 Calculate how much money people at different 
ages, ranging from 20 to 80 (i.e., age 20, 30, 40, 
50, 60, 70, and 80), are predicted to donate to 
charitable organizations in a 12-month period, 
for both volunteers and non-volunteers. 

b.	 Either by hand or using a spreadsheet program, 
create a graph showing these predictions. 

6.	 Based on their analyses, the agency’s research team 
is confident that there is a relationship between 
people’s age and the amount of money they donate 
to charitable organizations. But the researchers 
want to assess whether this relationship is linear or 
curvilinear. Table 14.16 shows the results of a mul-
tiple linear regression that uses a linear version of the 
“Age” variable and a quadratic version of the “Age” 
variable to predict the total amount of money that 
people donated to charitable organizations in the 
past 12 months. 
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a.	 Explain what the unstandardized slope coeffi-
cient of the linear “Age” variable shows, in terms 
of the direction of the relationship between age 
and charitable giving. 

b.	 Explain what the unstandardized slope co-
efficient of the quadratic “Age” variable (age 
squared) shows, in terms of whether and how 
the relationship between age and charitable 
giving is curvilinear.

7.	 Using the information in Table 14.16:

a.	 Write out the regression prediction equation for 
a person who is 20 years old. Be sure to account 
for the centring of the age variable. Then, calcu-
late the result. 

b.	 Write out the regression prediction equation for 
a person who is 50 years old, and calculate the 
result. 

c.	 Write out the regression prediction equation for a 
person who is 80 years old, and calculate the result.

8.	 Using the information in Table 14.16 and the ap-
proach you used in question 7, calculate how much 
money people at different ages ranging from 20 to 80 
(i.e., age 20, 30, 40, 50, 60, 70, and 80), are predicted 
to donate to charitable organizations in a 12-month 
period. Either by hand or using a spreadsheet pro-
gram, create a graph showing these predictions. 

Table 14.16  Results of a Multiple Linear Regression 
with Two Independent Variables (One Linear and One 
Quadratic) 

Dependent variable: Total financial donations to 
charitable organizations ($) in the past 12 months  
(n = 14,538)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 334.35* —

Age (in years, 
centred on 45)

6.18* 0.173

Age (in years, 
centred on 45), 
squared

−0.06* −0.031

Adjusted R2 0.03
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.

9.	 The first step in a logarithmic transformation is 
to express each value on the original variable as a 
common base number raised to an exponent. Ex-
press the following numbers in base 2 exponent 
form. (You will need to use a calculator or a spread-
sheet program to do these calculations.) 

a.	 20
b.	 50
c.	 80

10.	 Table 14.17 shows the results of a simple linear re-
gression that uses a variable capturing the number of 
hours that people volunteered in the past 12 months, 
log-transformed to base 2, to predict the total 
amount of money that people donated to charitable 
organizations in the past 12 months. Only people 
who volunteered for at least one hour in the past 12 
months are included in the analysis.

a.	 Explain what the unstandardized slope coeffi-
cient of the log-transformed “Hours spent vol-
unteering” variable shows. 

b.	 Explain what the constant coefficient shows. 

11.	 Using the information in Table 14.17 and your an-
swers to question 9:

a.	 Write out the regression prediction equation for 
people who volunteered for 20 hours in the past 
12 months, and calculate the result. 

Table 14.17  Results of a Simple Linear Regression 
with a Log-Transformed Independent Variable

Dependent variable: Total financial donations to 
charitable organizations ($) in the past 12 months (n = 
6,278)

Unstandardized 
Coefficient 

Standardized 
Coefficient

Constant 170.11* —

Hours spent 
volunteering in 
past 12 months 
(log base 2)

49.47* 0.143

Adjusted R2 0.02
*Indicates that results are statistically significant at the p < 0.05 level.
Source: Author generated; Calculated using data from Statistics Canada, 2017.
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Table 14.18  Proportion of Canadian-Born University Graduates Aged 25 to 65 at Level 2 or Below in Skill 
Proficiency Levels across Various Socio-Economic Characteristics

Level 2 or Below,  
Literacy

Level 2 or Below,  
Numeracy

Percentage

Gender
Men (ref.) 13.6 16.8
Women 16.2 26.8*

Age group
25 to 29 12.3 19.5
30 to 34 11.3 17.4
35 to 39 (ref.) 8.6 17.4
40 to 44 13.7 21.2
45 to 49 14.2 22.0
50 to 54 17.9* 26.8
55 to 59 23.8* 29.0*
60 to 65 23.9* 29.3*

First language spoken (mother tongue)
English (ref.) 12.7 20.6
French 18.5* 24.0
Other 23.8* 30.3

Parental education
Less than a high school diploma (ref.) 26.6 34.7
At least one has a high school diploma 18.8 26.8
At least one has a PSE below bachelor 11.7* 18.7*
At least one has a university degree 11.5* 18.0*

Number of books in home at age 16
10 or less (ref.) 30.9 39.1
11 to 25 20.5 30.5
26 to 100 17.0 24.0*
101 to 200 14.4* 20.8*
More than 200 8.6* 15.4*

Field of study
STEM (ref.) 9.4 11.5
Humanities, languages, and arts 17.9* 29.4*
Social science, business, and law 13.1 20.9
Teacher training and education science 22.2* 29.1*
Health and welfare 15.5 26.5*

Educational attainment
Bachelor’s degree (ref.) 16.0 23.4
1st professional degree (medical, veterinary medical, 
dental, optometry, law, divinity) 13.1 19.3

Master’s or doctorate 13.2 19.9

*Significantly different from the reference category (ref.) (p < 0.05).

Note: PSE = Post-secondary education. STEM includes science, technology, engineering, mathematics, and computer science.

Source: Programme for the International Assessment of Adult Competencies (PIAAC) 2012.

Source: Excerpt from Hango 2014, 5.
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b.	 Write out the regression prediction equation for 
people who volunteered for 50 hours in the past 
12 months, and calculate the result. 

c.	 Write out the regression prediction equation for 
a people who volunteered for 80 hours in the 
past 12 months, and calculate the result. 

12.	 Table 14.18, excerpted from a Statistics Canada 
report, shows the relationship between low levels of 
literacy or numeracy and a series of socio-economic 
characteristics (Hango 2014). In particular, it 
shows the percentage of Canadian-born university 
graduates in each category with Level 2 literacy 
or less, and the percentage with Level 2 numer-
acy or less. (People with Level 2 numeracy or less 
can typically only perform simple mathematical 
operations and cannot understand complex math-
ematical information or engage in problem-solving 
strategies.) 

a.	 Describe how gender is related to literacy and 
numeracy levels.

b.	 Describe how age is related to literacy and num-
eracy levels.

c.	 Describe how people’s first language spoken 
(mother tongue) is related to literacy and num-
eracy levels. 

13.	 Social scientists know that the socio-economic 
status of a person’s family is related to that person’s 
literacy and numeracy skills. Using the information 
in Table 14.18:

a.	 Describe how parental education is related to lit-
eracy and numeracy levels.

b.	 Describe how the number of books in people’s 
homes is related to literacy and numeracy levels.

14.	 Using the information in Table 14.18:

a.	 Describe how people’s field of study is related to 
their literacy and numeracy levels.

b.	 Describe how people’s level of educational at-
tainment is related to their literacy and numer-
acy levels. 

Practice Using Statistical Software (IBM SPSS)

Answer these questions using IBM SPSS and the GSS27.
sav or the GSS27_student.sav dataset available from the 
Student Resources area of the companion website for this 
book. Weight the data using the “Standardized person 
weight” [STD_WGHT] variable you created following 
the instructions in Chapter 5. Report two decimal places 
in your answers, unless fewer are printed by IBM SPSS. 
It is imperative that you save the dataset to keep any new 
variables that you create.

1.	 Use the Compute Variable tool to create an inter-
action variable by multiplying the “Women” 
[WOMEN] dummy variable by the “Visible min-
ority” [IS_VISMIN] dummy variable. (You cre-
ated these variables in “Practice Using Statistical 
Software” in Chapters 12 and 13, respectively.) To 
ensure that cases with missing values are treated ap-
propriately, use the If Cases option to assign a value 
on the new variable only if the value of IS_VISMIN 
is greater than or equal to “0” (IS_VISMIN >= 0). 

Call the new variable “Visible minority women” 
[VISMIN_WOMEN]. Produce a cross-tabulation 
of the “Women” [WOMEN] and “Visible minority” 
[IS_VISMIN] variables, and compare it to a fre-
quency distribution of “Visible minority women” 
[VISMIN_WOMEN] to ensure that the variable was 
created correctly. 

2.	 Use the Linear Regression procedure to produce a 
regression of the independent variables “Women” 
[WOMEN], “Visible minority” [IS_VISMIN], and 
“Visible minority women” [VISMIN_WOMEN] 
on the dependent variable “Number of paid hours 
worked per week - All jobs” [WKWEHRC]. 

a.	 Explain what the constant coefficient shows. 
b.	 Explain what each of the unstandardized slope 

coefficients show.
c.	 Use the regression results to calculate the pre-

dicted number of paid hours of work each week 
for the following: 
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•	 Women who are visible minorities
•	 Men who are visible minorities
•	 Women who are not visible minorities
•	 Men who are not visible minorities

3.	 Create a variable that captures the interaction be-
tween age and having a post-secondary educational 
credential. 

a.	 Use the Recode into Different Variables tool 
to recode the “Education - Highest degree 
(4 categories)” [DH1GED] variable into a “Has a 
postsecondary education” [POSTSECONDARY] 
dummy variable. In the new variable, assign the 
value “1” to people who have a post-secondary 
diploma or a university degree, and assign the 
value “0” to people who only have a high school 
education or have less than a high school educa-
tion. The remaining value can be designated as 
system-missing in the new variable. Produce fre-
quency distributions of the original variable “Edu-
cation - Highest degree (4 categories)” [DH1GED] 
and the new variable “Has a postsecondary educa-
tion” [POSTSECONDARY], and compare them to 
be sure that the recoding is correct.

b.	 Use the Compute Variable tool to create an inter-
action variable by multiplying the “Has a post-
secondary education” [POSTSECONDARY] 
dummy variable by the “Age (centred)” [AGE_
CENTRED] variable (which you created in ques-
tion 1[b] of “Practice Using Statistical Software” 
in Chapter 13). Call the new variable “Age x Post-
secondary education” [AGE_POSTSEC]. Find 
the mean of the new interaction variable.

4.	 Use the Linear Regression procedure to produce a re-
gression of the independent variables “Age (centred)” 
[AGE_CENTRED], “Has a postsecondary educa-
tion” [POSTSECONDARY], and “Age x Postsecond-
ary education” [AGE_POSTSEC] on the dependent 
variable “Number of paid hours worked per week - 
All jobs” [WKWEHRC]. 

a.	 Explain what the constant coefficient shows. 
b.	 Explain what each of the unstandardized slope 

coefficients show.

c.	 Use the regression results to calculate the pre-
dicted number of paid hours worked each week 
for the following: 

•	 A 20-year-old with a post-secondary 
education

•	 A 20-year-old without a post-secondary 
education

•	 A 65-year-old with a post-secondary 
education 

•	 A 65-year-old without a post-secondary 
education 

Be sure to account for centring of the age variable in 
your calculations. 

5.	 Use the Compute Variable tool to create a quadratic 
variable by multiplying the “Age (centred)” [AGE_
CENTRED] variable by itself. Call the new variable 
“Age (squared)” [AGE_SQUARED]. Find the mean 
of the new quadratic variable.

6.	 Use the Linear Regression procedure to produce 
a regression of the independent variables “Age 
(centred)” [AGE_CENTRED] and “Age squared” 
[AGE_SQUARED] on the dependent variable 
“Number of paid hours worked per week - All jobs” 
[WKWEHRC]. 

a.	 Explain what the unstandardized slope coeffi-
cient of the linear “Age” variable shows, in terms 
of the direction of the relationship between age 
and the number of hours that people work each 
week. 

b.	 Explain what the unstandardized slope coeffi-
cient of the quadratic “Age” variable shows, in 
terms of whether and how the relationship be-
tween age and the number of hours that people 
work each week is curvilinear.

7.	 The distribution of the variable “Number of new 
people met - Past month” [SCP_110] is right-skewed.  

a.	 In the Variable View, designate the value “0” as 
missing for this variable.

b.	 Use the Compute Variable tool to create a ver-
sion of this variable that is log-transformed to 
base 2, by programming this command into the 
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“Numeric expression” box: LN(SCP_110)/LN(2). 
Call the new variable “Number of new people 
met - past month (log base 2)” [SCP_110_LOG2]. 
Find the mean of the new log-transformed 
variable.

8.	 Use the Linear Regression procedure to produce a 
regression of the independent variable “Number of 

new people met - past month - Log base 2” [SCP_110_
LOG2] on the dependent variable “Number of close 
friends” [SCF_100C]. 

a.	 Explain what the constant coefficient shows.
b.	 Explain what the unstandardized slope coeffi-

cient of the log-transformed variable shows. 
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