Inference about Differences in Means

Appendix: The Distribution of the Pooled Sample Variance 18.B

In this appendix, we prove that the *t*-statistic for the difference in means $\mu_X - \mu_Y$ in the two-sample model with normal trials and equal variances (Section 18.1.3) has a t distribution.

To proceed with our small-sample techniques based on the t distribution, we need to be able to find an estimator of the variance of $\bar{X}_n - \bar{Y}_m$ that is described by a χ^2 distribution and is independent of $\bar{X}_n - \bar{Y}_m$. This is where the equal variance assumption comes into play. If σ_{χ}^2 and σ_{γ}^2 differ, there is no estimator with the properties we seek.

Distribution of the pooled sample variance and the *t*-statistic.

In the normal two-sample model with equal variances,

- $\begin{array}{ll} (i) \quad \bar{X}_n \bar{Y}_m \sim N(\mu_X \mu_Y, \sigma^2(\frac{1}{n} + \frac{1}{m})), \\ (ii) \quad \frac{n+m-2}{\sigma^2} \mathcal{S}_{\text{pool}}^2 \sim \chi^2(n+m-2), \quad and \\ (iii) \quad \bar{X}_n \bar{Y}_m \; and \; \mathcal{S}_{\text{pool}}^2 \; are \; independent. \end{array}$

Thus
$$\frac{(\bar{X}_n - \bar{Y}_m) - (\mu_X - \mu_Y)}{S_{\text{pool}}\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n + m - 2).$$

Part (i) of the statement was noted in the text. For part (ii) we need the following fact about χ^2 distributions:

Sums of independent χ^2 random variables. If $C \sim \chi^2(c)$ and $D \sim \chi^2(d)$ are independent, then $C + D \sim \chi^2(c + d)$.

This fact is easy to explain. Remember that a $\chi^2(c)$ random variable can be represented as the sum of the squares of c independent N(0, 1) random variables. If we represent both C and D in this way, making sure that all of the N(0, 1) random variables used are independent, then C + D will be the sum of the squares of c + dindependent N(0, 1) variables, and so will have a $\chi^2(c + d)$ distribution.

1

2 CHAPTER 18 Inference about Differences in Means

We first derive the distribution of S_{pool}^2 . Since $\sigma_X^2 = \sigma_Y^2 = \sigma^2$, we have

$$\frac{n-1}{\sigma^2}S_X^2 \sim \chi^2(n-1) \text{ and } \frac{m-1}{\sigma^2}S_Y^2 \sim \chi^2(m-1)$$

(see Section 17.A.2). It will be useful to express these facts in the form

(18.B.1)
$$S_X^2 \sim \sigma^2 \frac{\chi^2(n-1)}{n-1} \text{ and } S_Y^2 \sim \sigma^2 \frac{\chi^2(m-1)}{m-1}.$$

Here, the notation $\sigma^2 \frac{\chi^2(n-1)}{n-1}$ represents the distribution of a $\chi^2(n-1)$ random variable that has been multiplied by $\frac{\sigma^2}{n-1}$. Since $S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ and $S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y}_m)^2$, multiplying the relations in (18.B.1) by n-1 and by m-1 yields

(18.B.2)
$$\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \sim \sigma^2 \chi^2 (n-1)$$
 and $\sum_{i=1}^{m} (Y_i - \bar{Y}_m)^2 \sim \sigma^2 \chi^2 (m-1).$

Because the x and y samples are independent of each other, the two sums in (18.B.2) are independent of one another, so the fact yields

$$\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + \sum_{i=1}^{m} (Y_i - \bar{Y}_m)^2 \sim \sigma^2 \chi^2 (n + m - 2).$$

Dividing both sides by n + m - 2 gives us

$$\frac{1}{n+m-2}\left(\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + \sum_{j=1}^{m} (Y_j - \bar{Y}_m)^2\right) \sim \sigma^2 \frac{\chi^2(n+m-2)}{n+m-2}.$$

The left-hand side of this expression is the definition of S_{pool}^2 , so we are done.

Next, we establish part (iii), that the difference $\bar{X}_n - \bar{Y}_m$ and the pooled sample variance S_{pool}^2 are independent random variables. We know from Section 17.A.4 that \bar{X}_n and S_X^2 are independent random variables, as are \bar{Y}_n and S_Y^2 . Moreover, since the *x* and *y* samples are independent, we also know that \bar{X}_n is independent of S_Y^2 , and \bar{Y}_m of S_X^2 . Finally, we saw in the text that we can write S_{pool}^2 as $\frac{n-1}{n+m-2}S_X^2 + \frac{m-1}{n+m-2}S_Y^2$. Since each of the two terms in this sum is independent of each of the two terms in $\bar{X}_n - \bar{Y}_m$, it follows (see "New independent random variables from old" in Section 4.A.1) that $\bar{X}_n - \bar{Y}_m$ and S_{pool}^2 are independent.