Inference about Differences in Means

Appendix: The Distribution of the Pooled

18.B Sample Variance

In this appendix, we prove that the t-statistic for the difference in means $\mu_{X}-\mu_{Y}$ in the two-sample model with normal trials and equal variances (Section 18.1.3) has a t distribution.

To proceed with our small-sample techniques based on the t distribution, we need to be able to find an estimator of the variance of $\bar{X}_{n}-\bar{Y}_{m}$ that is described by a χ^{2} distribution and is independent of $\bar{X}_{n}-\bar{Y}_{m}$. This is where the equal variance assumption comes into play. If σ_{X}^{2} and σ_{Y}^{2} differ, there is no estimator with the properties we seek.

Distribution of the pooled sample variance and the t-statistic.

In the normal two-sample model with equal variances,
(i) $\bar{X}_{n}-\bar{Y}_{m} \sim N\left(\mu_{X}-\mu_{Y}, \sigma^{2}\left(\frac{1}{n}+\frac{1}{m}\right)\right)$,
(ii) $\frac{n+m-2}{\sigma^{2}} S_{\text {pool }}^{2} \sim \chi^{2}(n+m-2)$, and
(iii) $\bar{X}_{n}^{\sigma^{2}}-\bar{Y}_{m}$ and $S_{\text {pool }}^{2}$ are independent.

Thus $\frac{\left(\bar{X}_{n}-\bar{Y}_{m}\right)-\left(\mu_{X}-\mu_{Y}\right)}{\mathcal{S}_{\text {pool }} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t(n+m-2)$.
Part (i) of the statement was noted in the text. For part (ii) we need the following fact about χ^{2} distributions:

Sums of independent χ^{2} random variables.

If $C \sim \chi^{2}(c)$ and $D \sim \chi^{2}(d)$ are independent, then $C+D \sim \chi^{2}(c+d)$.
This fact is easy to explain. Remember that a $\chi^{2}(c)$ random variable can be represented as the sum of the squares of c independent $N(0,1)$ random variables. If we represent both C and D in this way, making sure that all of the $N(0,1)$ random variables used are independent, then $C+D$ will be the sum of the squares of $c+d$ independent $N(0,1)$ variables, and so will have a $\chi^{2}(c+d)$ distribution.

We first derive the distribution of $\mathcal{S}_{\text {pool }}^{2}$. Since $\sigma_{X}^{2}=\sigma_{Y}^{2}=\sigma^{2}$, we have

$$
\frac{n-1}{\sigma^{2}} S_{X}^{2} \sim \chi^{2}(n-1) \text { and } \frac{m-1}{\sigma^{2}} S_{Y}^{2} \sim \chi^{2}(m-1)
$$

(see Section 17.A.2). It will be useful to express these facts in the form

$$
\begin{equation*}
S_{X}^{2} \sim \sigma^{2} \frac{\chi^{2}(n-1)}{n-1} \text { and } S_{Y}^{2} \sim \sigma^{2} \frac{\chi^{2}(m-1)}{m-1} \tag{18.B.1}
\end{equation*}
$$

Here, the notation $\sigma^{2} \frac{\chi^{2}(n-1)}{n-1}$ represents the distribution of a $\chi^{2}(n-1)$ random variable that has been multiplied by $\frac{\sigma^{2}}{n-1}$. Since $S_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ and $S_{Y}^{2}=\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}_{m}\right)^{2}$, multiplying the relations in (18.B.1) by $n-1$ and by $m-1$ yields

$$
\begin{equation*}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \sim \sigma^{2} \chi^{2}(n-1) \text { and } \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}_{m}\right)^{2} \sim \sigma^{2} \chi^{2}(m-1) \tag{18.B.2}
\end{equation*}
$$

Because the x and y samples are independent of each other, the two sums in (18.B.2) are independent of one another, so the fact yields

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+\sum_{i=1}^{m}\left(Y_{i}-\bar{Y}_{m}\right)^{2} \sim \sigma^{2} \chi^{2}(n+m-2)
$$

Dividing both sides by $n+m-2$ gives us

$$
\frac{1}{n+m-2}\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+\sum_{j=1}^{m}\left(Y_{j}-\bar{Y}_{m}\right)^{2}\right) \sim \sigma^{2} \frac{\chi^{2}(n+m-2)}{n+m-2} .
$$

The left-hand side of this expression is the definition of $\mathcal{S}_{\text {pool }}^{2}$, so we are done.
Next, we establish part (iii), that the difference $\bar{X}_{n}-\bar{Y}_{m}$ and the pooled sample variance $S_{\text {pool }}^{2}$ are independent random variables. We know from Section 17.A. 4 that \bar{X}_{n} and S_{X}^{2} are independent random variables, as are \bar{Y}_{n} and S_{Y}^{2}. Moreover, since the x and y samples are independent, we also know that \bar{X}_{n} is independent of S_{Y}^{2}, and \bar{Y}_{m} of S_{X}^{2}. Finally, we saw in the text that we can write $\mathcal{S}_{\text {pool }}^{2}$ as $\frac{n-1}{n+m-2} S_{X}^{2}+$ $\frac{m-1}{n+m-2} S_{Y}^{2}$. Since each of the two terms in this sum is independent of each of the two terms in $\bar{X}_{n}-\bar{Y}_{m}$, it follows (see "New independent random variables from old" in Section 4.A.1) that $\bar{X}_{n}-\bar{Y}_{m}$ and $S_{\text {pool }}^{2}$ are independent.

