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17Inference from Small Samples

17.A
Appendix: Descendants of the Standard
Normal Distribution

We now introduce three new families of distributions that are used in inference
procedures in settings with normally distributed trials. These include not only the
procedures introduced in this chapter, but also ones for inference about differ-
ences in means (Chapter 18) and about regression parameters (Chapter 20). All
three families of distributions can be defined as the distributions of functions of
independent standard normal random variables, and their definitions suggest some
of the contexts in which they will be useful for inference.

The three new families of distributions are the 𝜒2 (or chi-squared), t, and F
distributions.1 Members of the 𝜒2 and t families of distributions are distinguished
by a parameter d, while F distributions are distinguished by a pair of parameters
(k, d). All of these parameters are called degrees of freedom.

Definition.
Let

{
Zi

}d

i=1
be a sequence of i.i.d. standard normal random variables, and let the

random variable C be the sum of the squares of the Zi:

(17.A.1) C =
d∑

i=1

(Zi)2.

Then C has a 𝝌
2 (or chi-squared) distribution with d degrees of freedom

(denoted C ∼ 𝜒2(d)).

Definition.
Let Z be a standard normal random variable, and let C be a random variable that has
a 𝜒2(d) distribution and that is independent of Z. If we define the random variable
T by

(17.A.2) T = Z√
C∕d

,

1𝜒 is the lowercase version of the Greek letter chi. Although it looks like an x, the sound it represents
is closer to that of a Scottish ch. “Chi” is pronounced to rhyme with “buy,” but with the b replaced by
a k.

1
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2 CHAPTER 17 Inference from Small Samples

then T is said to have a t distribution with d degrees of freedom (denoted T ∼
t(d)).

Definition.
Let Ck and Cd be independent𝜒2 random variables with k and d degrees of freedom,
respectively. If we define the random variable F by

(17.A.3) F =
Ck∕k

Cd∕d
,

then F is said to have an F distribution with k and d degrees of freedom (denoted
F ∼ F(k, d)).

While these families of distributions do not have very memorable names, they
appear so frequently in statistical analyses that you quickly get used to them.2

Unlike standard normal and t distributions, 𝜒2 and F distributions are not
symmetric. Therefore, while it was enough to define z-values and t-values for the
right tails of their distributions, we need to define separate 𝜒2-values and F-values
for the left and right tails. This leads to a different notation for these values. If
C ∼ 𝜒2(d), we write

̄
cd
𝛼 for the left-tail value and c̄ d

𝛼 for the right-tail value. These
are defined by

P(C ≤
̄
cd
𝛼) = 𝛼 and P(C ≥ c̄ d

𝛼 ) = 𝛼.

In the language of Section 6.2,
̄
cd
𝛼 is the (100𝛼)th percentile of the 𝜒2(d) distribu-

tion, and c̄ d
𝛼 is the (100(1 − 𝛼))th percentile of this distribution.

Similarly, for F ∼ F(k, d), we define the left-tail value
̄
Fk,d
𝛼 and the right-tail

value F̄ k,d
𝛼 by

P(F≤
̄
Fk,d
𝛼 ) = 𝛼 and P(F≥ F̄ k,d

𝛼 ) = 𝛼.

Excel calculation: Finding 𝜒2 and F probabilities and values
Probabilities and values for 𝜒2 and F distributions can be computed using the ap-
propriate worksheets in the distributions.xlsx workbook. They can also
be obtained using built-in Excel functions:

Suppose C ∼ 𝜒2(d).
To obtain P(C < a), enter “=CHISQ.DIST(a,d,1)”.
To obtain P(C > b), enter “=CHISQ.DIST.RT(b,d)”.
To obtain

̄
cd
𝛼 , enter “=CHISQ.INV(𝛼,d)”.

2Where do these names come from? The name of the 𝜒2 distribution is explained by the fact that the
Greek letter 𝜒 is an old notation for the standard normal distribution. The F distribution was named
in honor of R. A. Fisher, the father of modern statistics, whom we introduced in Section 14.3.2. But
the choice of the letter t for the t distribution seems to have been made by Gosset for no good reason
at all. See Churchill Eisenhart, “On the Transition from ‘Student’s’ z to ‘Student’s’ t,” American
Statistician 33 (1979), 6–10.



Trim Size: 7.5in x 9.25in Sandholm bapp01.tex V1 - 10/05/2018 3:41pm Page 3�

� �

�

17.A Appendix: Descendants of the Standard Normal Distribution 3

To obtain c̄ d
𝛼 , enter “=CHISQ.INV.RT(𝛼,d)” (or “=CHISQ.INV(1-𝛼,d)”).

Suppose F ∼ F(k, d).
To obtain P(F< a), enter “=F.DIST(a,k,d,1)”.
To obtain P(F> b), enter “=F.DIST.RT(b,k,d)”.
To obtain

̄
Fk,d
𝛼 , enter “=F.INV(𝛼,k,d)”.

To obtain F̄ k,d
𝛼 , enter “=F.INV.RT(𝛼,k,d)” (or “=F.INV(1-𝛼,k,d)”).

17.A.1 𝝌
2 distributions

The 𝜒2(d) distribution is defined as the distribution of the sum of the squares of
d independent standard normal random variables. Because they represent sums
of positive random variables, 𝜒2 distributions place all of their mass on positive
outcomes.

Figure 17.A.1 presents the density functions of 𝜒2 distributions with various
numbers of degrees of freedom.3 As the number of degrees of freedom increases,
we are summing the squares of more independent standard normal random vari-
ables, so the mass in the distribution shifts to the right and becomes more spread
out. To be more precise, it can be shown that if C has a 𝜒2(d) distribution, then its
mean and variance are E(C) = d and Var(C) = 2d (see Exercise 17.A.12).

Figure 17.A.1: Some 𝜒2

density functions.
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3The density functions for 𝜒2, t, and F distributions are stated in Appendix 17.A.6.
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4 CHAPTER 17 Inference from Small Samples

Rather than consider the sum of d squared standard normal random variables,
as in (17.A.1), we can instead focus on their sample mean,

C
d

= 1
d

d∑
i=1

(Zi)2.

In the definitions of the t and F distributions, the 𝜒2 random variables appear in
this form. The random variable C∕d is said to have an averaged 𝝌

2 distribution
with d degrees of freedom. Since E(C) = d and Var(C) = 2d, our formulas from
Chapter 3 imply that

E
(C

d

)
= 1

d
E(C) = 1 and Var

(C
d

)
= 1

d2
Var(C) = 2

d
.

That is, an averaged 𝜒2(d) random variable has a mean of 1 and a variance in-
versely proportional to d. These properties are illustrated in Figure 17.A.2, which
presents the densities of averaged 𝜒2 distributions for various choices of d. While
averaged chi-squared random variables are more convenient than unaveraged ones
in certain respects, statistical tables and procedures are usually presented in terms
of the unaveraged ones.

17.A.2 The sample variance of normal trials

The 𝜒2 distributions describe the estimators of dispersion for i.i.d. normal tri-
als {Xi}n

i=1, Xi ∼ N(𝜇, 𝜎2). First consider the known-mean sample variance intro-
duced in Section 14.4:

Vn = 1
n

n∑
i=1

(Xi − 𝜇)2.

Figure 17.A.2: Some
averaged 𝜒2 density
functions.
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17.A Appendix: Descendants of the Standard Normal Distribution 5

Dividing both sides of this equation by 𝜎2, we obtain

(17.A.4)
Vn

𝜎2
= 1

n

n∑
i=1

(
Xi − 𝜇

𝜎

)2

.

Since Xi ∼ N(𝜇, 𝜎2), the summands in (17.A.4) are squared standard normal ran-
dom variables, so Vn∕𝜎2 has an averaged 𝜒2 distribution with n degrees of free-
dom. This fact is usually expressed in terms of the original 𝜒2 distribution:

(17.A.5) If {Xi}n
i=1 is i.i.d. with Xi ∼ N(𝜇, 𝜎2), then

n
𝜎2

Vn ∼ 𝜒2(n).

Since the 𝜒2(n) distribution has mean n, (17.A.5) implies that E(Vn) = 𝜎2: the
known-mean sample variance is an unbiased estimator of the variance 𝜎2. We es-
tablished the unbiasedness of Vn already, in Section 14.4. Fact (17.A.5) does much
more than this. It fully describes the distribution of Vn, provided that the trials are
normally distributed.

If the mean 𝜇 were known, this fact would allow us to use Vn to construct
interval estimators and hypothesis tests about the variance 𝜎2. But in reality, since
we almost never know 𝜇 in advance, we estimate 𝜎2 using the sample variance,

S2
n = 1

n − 1

n∑
i=1

(Xi − X̄n)2.

When the trials are normally distributed, the distribution of the sample variance
can also be described using a 𝜒2 distribution, but this time one with n − 1 degrees
of freedom.

Distribution of the sample variance of normal trials.

(17.A.6) If {Xi}n
i=1 is i.i.d. with Xi ∼ N(𝜇, 𝜎2), then

n − 1
𝜎2

S2
n ∼ 𝜒2(n − 1).

It follows from (17.A.6) that E(S2
n) = 𝜎2: the sample variance S2

n is an un-
biased estimator of the variance 𝜎2. But as before, (17.A.6) fully describes the
distribution of S2

n, provided the trials are normally distributed. Among other ap-
plications, this fact can be used to define interval estimators and hypothesis tests
about an unknown variance of normally distributed trials—see Exercise 17.A.13.

■ Example Dispersion in driving speeds.

Driving speeds of vehicles on a stretch of I-94 near Madison are normally dis-
tributed with a standard deviation of 10 miles per hour, and hence a variance of
100 (miles per hour)2. If we randomly sample the speeds of 13 vehicles, what is
the probability that the sample variance exceeds 150?
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6 CHAPTER 17 Inference from Small Samples

To compute the probability that P(S2
13 > 150), we need to rewrite the inequal-

ity in terms of a random variable C with a 𝜒2(12) distribution:

P(S2
13 > 150) = P

(n − 1
𝜎2

S2
13 >

12
100

⋅ 150
)
= P(C ≥ 18).

Using the distributions.xlsx workbook, we find that this probability
is .1157. ■

In Section 14.4.2, we discussed the meaning of the term “degrees of freedom,”
noting4 that the distribution of the sample variance of n i.i.d. normal trials can be
defined in terms of n − 1 i.i.d. normal random variables. This is the precisely the
idea underlying fact (17.A.6) above, which shows that after a suitable rescaling, the
sample variance S2

n follows a 𝜒2 distribution with n − 1 degrees of freedom—that
is, the distribution of the sum of n − 1 independent squared standard normals.
Deriving this fact is beyond the scope of this book, but we will discuss some related
ideas in Section 17.A.4.

17.A.3 t distributions

Our small-sample inference procedures in this chapter are based on t distributions.
As we stated above, the t distribution with d degrees of freedom is the distribution
of the random variable

(17.A.2) T = Z√
C∕d

,

where Z is standard normal, C has a 𝜒2(d) distribution, and Z and C are inde-
pendent. Since E(C∕d) = 1, T is obtained by taking a standard normal random
variable and dividing it by the square root of a random variable whose mean is 1.
If C∕d were always equal to 1, then T would simply be standard normal. In fact,
t distributions resemble standard normal distributions, in that they are symmetric,
bell-shaped curves centered at 0. But C∕d has some dispersion—as we saw earlier,
Var(C∕d) = 2

d
. This dispersion leads the t distributions to exhibit greater variation

about zero than the N(0, 1) distribution, as shown in Figure 17.1.
As d grows large, the variance Var(C∕d) = 2

d
shrinks to zero. Thus, in the

language of Section 7.3, C∕d converges in probability to 1 as d approaches in-
finity. Thus as d grows large, the t(d) distribution comes to closely resemble the
standard normal distribution. We can state this point formally using the notion of
convergence in distribution, which we introduced in Section 7.4 in order to state
the central limit theorem.

4See footnote 13 and Exercise 14.M.3.
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17.A Appendix: Descendants of the Standard Normal Distribution 7

Convergence of t distributions to the standard normal distribution.
If Td ∼ t(d), then as d approaches infinity, Td converges in distribution to Z ∼

N(0, 1).

17.A.4 Why does the t-statistic have a t distribution?

At last, we are prepared to explain the fact underlying the inference procedures
developed in this chapter: that the t-statistic of a random sample of n normal trials,
defined by

X̄n − 𝜇

1√
n
Sn

,

has a t distribution with n − 1 degrees of freedom.
Recall that the t(d) distribution is defined as the distribution of the random

variable

(17.A.7)
Z√

C∕d
,

where the random variables Z and C satisfy the following three assumptions:

(i) Z ∼ N(0, 1),
(ii) C ∼ 𝜒2(d), and

(iii) Z and C are independent.

Let’s relate these conditions to the ingredients in our t-statistic for i.i.d. normal
trials. To start, recall from Section 17.1 that the z-statistic of such trials has a stan-
dard normal distribution:

(17.A.8)
X̄n − 𝜇

𝜎√
n

∼ N(0, 1).

This corresponds to item (i). Next, we observed in Section 17.A.1 that a rescaled
version of the sample variance has a 𝜒2 distribution:

(17.A.9)
n − 1
𝜎2

S 2
n ∼ 𝜒2(n − 1).

This corresponds to item (ii). Now, we combine these two random variables the
same way that Z and C are combined in equation (17.A.7) to define the t distribu-
tion, and then cancel whatever we can:
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8 CHAPTER 17 Inference from Small Samples

(17.A.10)

X̄n − 𝜇
𝜎√
n√

n − 1
𝜎2 S 2

n

/
(n − 1)

=
X̄n − 𝜇

1√
n
Sn

.

The right-hand side of (17.A.10) is our t-statistic.5

But wait a minute . . . What happened to (iii)? For the argument above to
establish that the t-statistic has a t(n − 1) distribution, we need to know that the
random variables (17.A.8) and (17.A.9) are independent. This is far from obvious,
but it is true.

Independence of the sample mean and sample variance of normal
trials.

If {Xi}n
i=1 is i.i.d. with Xi ∼ N(𝜇, 𝜎2), then X̄n and S 2

n are independent random
variables.

With this fact in hand, the fact that functions of independent random variables
are themselves independent random variables (see Appendix 4.A.1) implies that
the random variables in (17.A.8) and (17.A.9) are independent. This gives us item
(iii), allowing us to conclude that the t-statistic indeed has a t distribution.

The fact that X̄n and S2
n are independent when the trials are normally dis-

tributed has a beautiful geometric explanation. This explanation takes quite a bit
of work to develop, and with regret we do not provide it here.6

17.A.5 F distributions

As we stated earlier, the F distribution with k and d degrees of freedom is the
distribution of the random variable

(17.A.3) F =
Ck∕k

Cd∕d
,

where Ck ∼ 𝜒2(k) and Cd ∼ 𝜒2(d) are independent random variables. Put differ-
ently, an F(k, d) distribution is the distribution of the ratio of an averaged 𝜒2(k)
random variable and an averaged 𝜒2(d) random variable. For obvious reasons,

5Something subtle happens in calculation (17.A.10). If the variance 𝜎2 is unknown, then neither the
standard normal random variable from (17.A.8) nor the 𝜒2 random variable from (17.A.9) is
something we can observe. But when we take their ratio, the variances from (17.A.8) and (17.A.9)
cancel. If we are performing a hypothesis test about the mean 𝜇, then the null hypothesis imposes an
assumption about the value of 𝜇. Under this assumption, the t-statistic (17.A.10) is something we can
compute from the results of our sample. This is important, because otherwise we would not be able to
run the hypothesis test.
6We do not know of an explanation of this point at the level of our book. For a clear but advanced
treatment, see Ronald Christensen, Plane Answers to Complex Questions: The Theory of Linear
Models, 3rd ed., Springer, 2002.
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17.A Appendix: Descendants of the Standard Normal Distribution 9

k and d are often called the numerator degrees of freedom and the denominator
degrees of freedom, respectively.

The most basic use of the F distribution is in tests of equality of variances (see
Exercise 17.A.14). In this book, we use F distributions in the context of inference
in regression models (Chapter 20). To conclude this chapter, we note two relations
between F distributions and the families of distributions introduced above which
will be useful later on.

To obtain a link with t distributions, we take the definition (17.A.2) of the t(d)
distribution and square both sides, obtaining

(17.A.11) T2 = Z2

C∕d
,

where Z is standard normal, C is 𝜒2(d), and Z and C are independent random
variables. Now, since Z is standard normal, Z2 has a 𝜒2(1) distribution, and since
Z and C are independent, so are Z2 and C (see Appendix 4.A.1). Thus, comparing
(17.A.11) and (17.A.3), we conclude that the square of a random variable with a
t(d) distribution has an F(1, d) distribution.

(17.A.12) If T ∼ t(d), then T2 ∼ F(1, d).

The link between F and 𝜒2 distributions is quite similar to the one between
t distributions and the standard normal distribution (see Section 17.A.3). We il-
lustrate the link in Figure 17.A.3, which presents the density functions of F(5, d)
distributions for various choices of d, along with the density function of the av-
eraged 𝜒2(5) distribution (which we drew earlier in Figure 17.A.2). You can see
that as d grows large, the former densities increasingly resemble the latter.

The argument that establishes this connection is similar to the correspond-
ing one from Section 17.A.3. In definition (17.A.3), the F(k, d) random variable
F has an averaged 𝜒2(k) random variable as its numerator and an averaged 𝜒2(d)
random variable as its denominator. If we let d grow large, then we know from
Section 17.A.1 that the variance of the denominator of F goes to zero; in the

Figure 17.A.3: Some F(5, d)
density functions and the
averaged 𝜒2(5) density
function.
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10 CHAPTER 17 Inference from Small Samples

language of Section 7.3, this denominator converges in probability to 1. This sug-
gests that as d grows large, the F(k, d) distribution should approach an averaged
𝜒2(k) distribution, just as we see in Figure 17.A.3. We state this point formally
using the notion of convergence in distribution from Section 7.4.

Convergence of F distributions to averaged 𝝌
2 distributions.

If Fd ∼ F(k, d), then as d approaches infinity, Fd converges in distribution to
C∕k, where C ∼ 𝜒2(k).

S P E E D S O F C O N V E R G E N C E .

The claim above tells us that when the number of degrees of freedom d is large enough, values
from the F(k, d) distribution are well approximated by values from the averaged 𝜒2(k)
distribution. When this approximation is close, we can substitute the latter for the former in our
calculations without much effect on the results. How large must d be for this to be true?

In Table 17.A.1, we present right-tail values from F(1, d) for various choices of the number
of degrees of freedom d and tail probabilities. As d grows large, these values converge to
right-tail values from the 𝜒2(1) distribution (= the averaged 𝜒2(1) distribution). We report these
𝜒2-values in the last row of the table.

As with the convergence of t-values to z-values (Table 17.1), the convergence of F-values to
𝜒2 values becomes slower as the tail probability 𝛼 becomes closer to zero. But compared to what
we see in Table 17.1, the convergence in Table 17.A.1 is considerably slower. To get an F(1, d)
distribution that is about as close to the 𝜒2(1) distribution as the t(100) distribution is to the
standard normal distribution, we need to choose d = 500. Thus in statistical applications,
replacing F-values with 𝜒2 values is only innocuous at fairly large sample sizes. We will return
to this point when in the context of inference in regression models in Section 20.6.

Table 17.A.1: F(1, d) values and 𝜒2(1) values for various
numbers of degrees of freedom and tail probabilities

𝛼 = .10 𝛼 = .05 𝛼 = .025 𝛼 = .01 𝛼 = .005

F1,1
1−𝛼 39.863 161.448 647.789 4052.181 16210.723

F1,2
1−𝛼 8.526 18.513 38.506 98.503 198.501

F1,5
1−𝛼 4.060 6.608 10.007 16.258 22.785

F1,10
1−𝛼 3.285 4.965 6.937 10.044 12.826

F1,20
1−𝛼 2.975 4.351 5.871 8.096 9.944

F1,30
1−𝛼 2.881 4.171 5.568 7.562 9.180

F1,50
1−𝛼 2.809 4.034 5.340 7.171 8.626

F1,100
1−𝛼 2.756 3.936 5.179 6.895 8.241

F1,200
1−𝛼 2.731 3.888 5.100 6.763 8.057

F1,500
1−𝛼 2.716 3.860 5.054 6.686 7.950

c1
1−𝛼 2.706 3.841 5.024 6.635 7.879
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17.A Appendix: Descendants of the Standard Normal Distribution 11

17.A.6 The density functions

To close this appendix, we state formulas for the density functions of the 𝜒2, t,
and F distributions. To do so, we need to introduce an important mathematical
function called the gamma function:

Γ(x) = ∫
∞

0
tx−1e−tdt.

Although this function looks nasty, we can get a handle on it by focusing on the
values it takes at integers: it can be shown that Γ(n) = (n − 1)! for each positive
integer n. Thus, the gamma function provides a way of extending the factorial
function to allow non-integer arguments. Below, the gamma function is only used
as a normalizing term, making sure that the total areas under the density functions
equal 1. Notice in particular that the arguments of the gamma functions never
include x, the argument of the density function.

Density functions of the standard normal distribution and its
descendants.

The density function of the standard normal distribution is

f (x) = 1√
2𝜋

e−x2∕2.

The density function of the 𝜒2(d) distribution is

f (x) = x(d∕2)−1e−x∕2

Γ( d
2
) 2d∕2

if x > 0 (with f (x) = 0 otherwise).

The density function of the t(d) distribution is

f (x) =
Γ( d+1

2
)

Γ( d
2
)
√

d𝜋

(
1 + x2

d

)−(d+1)∕2

.

The density function of the F(k, d) distribution is

f (x) =
Γ( k+d

2
) x

k
2
−1 k

k
2 d

d
2

Γ( k
2
) Γ( d

2
) (kx + d)

k+d
2

if x > 0 (with f (x) = 0 otherwise).

If you use a computer to graph these density functions for various choices of
d and k, the results should look like Figures 17.1, 17.A.1, and 17.A.3.
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12 CHAPTER 17 Inference from Small Samples

KEY TERMS AND CONCEPTS

degrees of freedom (p. 1)
𝜒2 (or chi-squared) distribution

(p. 1)
t distribution (p. 2)

F distribution (p. 2)
averaged 𝜒2 distribution (p. 4)
sample variance of normal

trials (p. 4)

t-statistic (p. 7)
gamma function (p. 11)

Exercises

Exercise 17.A.1. Use distributions.xlsx or built-in Excel functions to an-
swer these questions:

a. If C ∼ 𝜒2(1), what is P(C > 2)?
b. If C ∼ 𝜒2(4), what is P(C < 3)?
c. If C ∼ 𝜒2(20), what is P(15 < C < 25)?

Exercise 17.A.2. Use distributions.xlsx or built-in Excel functions to
find these 𝜒2-values:

a.
̄
c10
.05.

b. c̄ 10
.02.

c.
̄
c30
.01.

d. c̄ 30
.01.

Exercise 17.A.3. Use distributions.xlsx or built-in Excel functions to an-
swer these questions:

a. If F ∼ F(1, 11), what is P(F < 1.00)?
b. If F ∼ F(5, 5), what is P(F > 2.20)?
c. If F ∼ F(10, 30), what is P(3.00 < F < 4.00)?

Exercise 17.A.4. Use distributions.xlsx or built-in Excel functions to
find these F-values:

a.
̄
F1,10
.05 .

b. F̄ 1,10
.02 .

c.
̄
F1,60
.05 .

d. F̄ 1,60
.05 .

Exercise 17.A.5. The army is testing a new self-targeting weapon. To score the
weapon’s performance, it conducts 10 trials, each of which involves a target 300
yards away; the score is obtained by squaring the distance of the impact point from
the target in each trial and summing the results. (A low score is a good score.)
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Suppose that in each trial, the distance of the impact point from the target is nor-
mally distributed with a mean of 0 feet and a standard deviation of 1.5 feet. What
is the probability that the total score is less than 30?

Exercise 17.A.6. A manufacturer of SD memory cards is evaluating the vari-
ation in the cards’ capacity. Suppose that the capacities of their 256-MB
cards are normally distributed with a mean of 242.2 MB and a variance of
.81 MB2. Suppose that the manufacturer measures the capacities of 11 randomly
chosen cards.

a. Describe the distribution of the sample variance.
b. Compute the probability that the sample variance is less than 1.00 MB2.

Exercise 17.A.7. The time it takes an Internet payment processor to process credit
card transactions is normally distributed with a mean of 2.70 seconds and a stan-
dard deviation of .85 seconds, and the times required for distinct transactions are
independent of one another. What is the probability that the sample standard de-
viation from 55 transactions will exceed 1.00 seconds?

Exercise 17.A.8. Let {Xi}6
i=1 be a sequence of i.i.d. draws from a normal distribu-

tion with mean 5 and variance 100.
a. Compute P(X̄6 > 7).
b. Compute P(S 2

6 > 120).
c. Compute P(X̄6 > 7 and S 2

6 > 120). Why is this calculation
straightforward given your answers to (a) and (b)?

Exercise 17.A.9. Let T = (X̄10 − 𝜇)∕( 1√
10

S10) be the t-statistic of 10 i.i.d. normal

trials. What is the probability that T2 is greater than 4? Answer this question using
two different methods.

Exercise 17.A.10. Let {Xi}n
i=1 and {Yi}m

i=1 be independent sequences of
i.i.d. normal trials. (For instance, each sequence could represent a random sample
from a distinct normally distributed population.) Suppose that the trials are drawn
from normal distributions with the same variance: Var(Xi) = Var(Yi) = 𝜎2. Show
that the ratio of the sequences’ sample variances, S 2

X∕S 2
Y , has an F(n − 1,m − 1)

distribution.

Exercise 17.A.11. A precision tool manufacturer would like to know whether the
variations in the lengths of knockout pins produced at two of its factories are equal.
The distributions of the lengths of knockout pins at each factory are known to be
normally distributed. Suppose that the variances of these distributions are equal.
If the manufacturer randomly samples 15 pins from factory X and 20 pins from
factory Y, what is the probability that the sample variance ratio S 2

X∕S 2
Y exceeds 2?

(Hint: Use the result of Exercise 17.A.10.)
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Exercise 17.A.12. Let C have a 𝜒2 distribution with d degrees of freedom.
a. Show that E(C) = d. (Hint: Use the definition of the 𝜒2(d) distribution in

terms of squared standard normal random variables and formula (4.15).)
b. It can be shown that if Z is a standard normal random variable, then

E(Z4) = 3. Use this fact to show that Var(C) = 2d.

Exercise 17.A.13. Let {Xi}n
i=1 be i.i.d. with Xi ∼ N(𝜇, 𝜎2).

a. Show that

P

(
𝜎2 ∈

[
(n − 1)S 2

n

c̄ n−1
𝛼∕2

,
(n − 1)S 2

n

̄
cn−1
𝛼∕2

])
= 1 − 𝛼.

The random interval in brackets is thus the (1 − 𝛼) interval estimator for
𝜎2 for normally distributed trials.

b. Suppose we want to test the null hypothesis H0 ∶ 𝜎2 = 𝜎2
0 against the

alternative H1 ∶ 𝜎2 > 𝜎2
0 at significance level 𝛼. Show that this can be

accomplished by rejecting the null hypothesis when the realized sample
variance s 2 satisfies

s 2 >
𝜎2

0 c̄ n−1
𝛼

n − 1
.

Exercise 17.A.14. Let {Xi}n
i=1 be i.i.d. N(𝜇X , 𝜎

2
X), let {Yi}m

i=1 be i.i.d. N(𝜇Y , 𝜎
2
Y ),

and suppose that the two sequences are independent. Exercise 17.A.10 showed
that if 𝜎2

X = 𝜎2
Y , then S 2

X∕S 2
Y has an F(n − 1,m − 1) distribution.

Suppose we want to test the null hypothesis H0 ∶ 𝜎2
X = 𝜎2

Y against the al-
ternative hypothesis H1 ∶ 𝜎2

X > 𝜎2
Y at significance level 𝛼. Show that this can be

accomplished by rejecting the null hypothesis when the realized sample variance
ratio s 2

X∕s 2
Y satisfies

s 2
X

s 2
Y

> F̄ n−1,m−1
𝛼 .


