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7The Central Limit Theorem

7.A Appendix: Proof of the Central Limit Theorem

The central limit theorem.
Let {Xi}n

i=1 be a sequence of i.i.d. random variables with mean E(Xi) = 𝜇

and variance Var(Xi) = 𝜎2. Let Sn = X1 +…+ Xn be the sum of these random
variables, and let Z ∼ N(0, 1) be a standard normal random variable. Then

Sn − n𝜇√
n𝜎

d
→ Z as n → ∞.

In words, the central limit theorem says that if the random variables {Xi}n
i=1

are i.i.d., then when the sample size n is large enough, the distribution of their
sum Sn is approximately normal with the appropriate mean and variance. What
is remarkable is that this limit result does not depend on the distribution of the
underlying trials.1 Our aim here is to prove this fundamental result.

7.A.1 Moment generating functions

The first step in proving the central limit theorem is to introduce a new and unex-
pected way of representing the distribution of a random variable. Its key advantage
is the ease with which it allows us to work with sums of independent random
variables.

Definition.
The moment generating function of the random variable X is a function MX de-
fined on some interval (−𝜀, 𝜀) by

(7.A.1) MX (t) = E(etX ).

For the moment generating function of a random variable to exist, the ex-
pected value in (7.A.1) must be finite for all t in an interval around 0. Moment
generating functions fail to exist for random variables that put too much probability

1This is not to say that the distribution does not matter at all. As we discussed in Chapter 7, if the
distribution of the trials is far from normal, then a larger number of trials is needed before the normal
approximation becomes accurate.
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2 CHAPTER 7 The Central Limit Theorem

on values approaching infinity or negative infinity (see property (ii) below). Be-
cause of this, our proof of the central limit theorem using moment generating
functions will not cover all cases in which the theorem is true; but as we explain
at the end of the section, this limitation can be remedied.2

■ Example Suppose that X has a Bernoulli(p) distribution: P(X = 1) = p and
P(X = 0) = 1 − p. Then the moment generating function of X is defined for all
t ∈ (−∞,∞)

MX(t) = E(etX) =
∑

x∈{0,1}
etx P(X = x) = (1 − p) + pet.

■

■ Example Suppose that T has an exponential(𝜆) distribution, so that its density
function is f (t) = 𝜆e−𝜆t for t ≥ 0 and f (t) = 0 otherwise. Then the moment gener-
ating function of T is defined for t ∈ (−∞, 𝜆) by

MT (t) = E(etX) = ∫
∞

0
ets𝜆e−𝜆s ds = ∫

∞

0
𝜆e(t−𝜆)s ds = 𝜆

t − 𝜆
e(t−𝜆)s |||∞s=0

= 𝜆

𝜆 − t
.

■

■ Example Suppose that Z has a standard normal distribution, so that its den-
sity function is f (z) = 1√

2𝜋
e−z2∕2. Then by completing the square, we find that the

moment generating function of Z is defined for all t ∈ (−∞,∞) by

MZ(t) = E(etZ)

= ∫
∞

−∞
etz ⋅ 1√

2𝜋
e−z2∕2 dz

= ∫
∞

−∞

1√
2𝜋

e−(z
2−2tz)∕2 dz

= ∫
∞

−∞

1√
2𝜋

e−(z
2−2tz+t2)∕2et2∕2 dz

= et2∕2 ∫
∞

−∞

1√
2𝜋

e−(z−t)2∕2 dz

= et2∕2,(7.A.2)

where the final equality is true because 1√
2𝜋

e−(z−t)2∕2 is the density of a random
variable with a N(t, 1) distribution. ■

2Away from probability theory, the moment generating function is known as the (bilateral) Laplace
transform.
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7.A Appendix: Proof of the Central Limit Theorem 3

We now state five important properties of moment generating functions. In-
tuitions and proofs are offered afterward.

Properties of moment generating functions.
Let X, Y, and {Xi}∞i=1 be random variables whose moment generating func-

tions exist.

(i) (Uniqueness) If MX(t) = MY (t) for all t ∈ (−𝜀, 𝜀), then X and Y have
the same distribution.

(ii) (Moments) E(Xk) = M(k)
X (0), where M(k)

X denotes the kth derivative of
MX.

(iii) (Linear functions of random variables) MaX+b(t) = ebtMX(at).
(iv) (Sums of independent random variables) If X and Y are independent,

then MX+Y (t) = MX(t)MY (t). Likewise, if {Xi}n
i=1 are independent and

Sn =
∑n

i=1 Xi, then MSn
(t) =

∏n
i=1 MXi

(t).
(v) (Continuity) If limi→∞ MXi

(t) = MX(t) for all t ∈ (−𝜀, 𝜀), then
{Xi}n

i=1 converges in distribution to X.

Property (i) shows that if a random variable admits a moment generating func-
tion, then this function determines the random variable’s distribution. For instance,
if we can show that some random variable Y has moment generating function
MY (t) = et2∕2, we can conclude from this and (7.A.2) that Y has a standard normal
distribution.

We can provide an idea of why this is true by focusing on random variables
with finite numbers of outcomes. Let X and Y be such random variables, and
suppose that their moment generating functions, which are defined for all real
numbers, are equal:

(7.A.3) MX(t) =
∑

x

etx P(X = x) =
∑

y

ety P(Y = y) = MY (t).

To show that X and Y have the same distribution, notice first that if t is large
enough, the summands in (7.A.3) with the largest exponents will be much larger
than all of the others. Therefore, if we let x̂ and ŷ be the largest positive probability
outcomes of X and Y , then for large enough t we have

etx̂ P(X = x̂) ≈ MX(t) = MY (t) ≈ etŷ P(Y = ŷ).

This can only be true if x̂ = ŷ and P(X = x̂) = P(Y = x̂): that is, X and Y must
have the same largest outcome, and this outcome must occur with the same
probability. If we now remove the terms corresponding to this outcome from the
sums in (7.A.3), we can use the same argument to deduce that X and Y have the
same second-largest outcome, and that these occur with the same probability.
And so on.3

3The general proof of uniqueness uses a quite different argument, not least because that moment
generating functions are only required to exist in a neighborhood of 0. See Patrick Billingsley,
Probability and Measure, 3rd ed., Wiley, 1995, Section 30.
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4 CHAPTER 7 The Central Limit Theorem

Property (ii) explains the name of the moment generating function: the val-
ues of E(Xk) for nonegative integers k, known as the moments of X, can be are
recovered from MX by evaluating its derivatives at 0. To see why this is true, we
evaluate the first few moments in the discrete case:4

MX(0) =
∑

x

etx P(X = x) |||t=0
= 1 = E(X0);

M′
X(0) =

d
dt

∑
x

etx P(X = x) |||t=0

=
∑

x

xetx P(X = x) |||t=0

= E(X);

M′′
X (0) =

d2

(dt)2
∑

x

etx P(X = x) |||t=0

= d
dt

∑
x

xetx P(X = x) |||t=0

=
∑

x

x2etx P(X = x) |||t=0

= E(X2).

Proceeding inductively shows that E(Xk) =
∑

x

xketx P(X = x) |||t=0
= M(k)

X (0).

■ Example If Z ∼ N(0, 1), then E(Z) = 0 and E(Z2) = Var(Z) + (E(Z))2 = 1.
What about higher moments? Since the moment generating function of Z exists,
all of these moments exist. The symmetry of the standard normal distribution
about 0 implies that the E(Xk) = 0 when k is odd. (Why?)

What if k is even? To determine E(Z4) using property (ii), we compute as
follows:

M(4)
X (0) = d4

(dt)4
et2∕2 |||t=0

=
(

t4et2∕2 + 6t2et2∕2 + 3et2∕2
) |||t=0

= 3.

Proceeding inductively, one can show that E(Z2n) = (2n!)∕(2nn!). ■

4The analysis in the continuous case requires results that justify switching the order of differentiation
and integration; see George Casella and Roger L. Berger, Statistical Inference, 2nd edition,
Duxbury/Thomson, 2002, Section 2.4.
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7.A Appendix: Proof of the Central Limit Theorem 5

Property (iii), the formula for the moment generating function of a linear
transformation of a random variable, is both useful and easy to verify:

MaX+b(t) = E(e(aX+b)t) = ebtE(eatX) = ebtMX(at).

■ Example Normal random variables.

What is the moment generating function of a normal random variable with mean
𝜇 and variance 𝜎2? If Z ∼ N(0, 1) is standard normal, then Y = 𝜇 + 𝜎Z has a
N(𝜇, 𝜎2) distribution, so property (iii) yields

(7.A.4) MY (t) = M𝜇+𝜎Z(t) = e𝜇tMZ(𝜎t) = e𝜇te(𝜎t)2∕2 = e𝜇t+𝜎2t2∕2. ■

Property (iv) is the fundamental fact we noted to start the section. While it
is often difficult to compute the distribution or density of a sum of independent
random variables directly, computing its moment generating function is merely
a matter of multiplication. This property follows easily from two facts: (a) the
exponential of a sum equals the product of the exponentials, and (b) the expectation
of the product of independent variables equals the product of their expectations
(see equation (4.20)). In particular:

MSn
(t) = E

(
et
∑n

i=1 Xi

)
= E

(
n∏

i=1

etXi

)
=

n∏
i=1

E(etXi ) =
n∏

i=1

MXi
(t).

■ Example Binomial random variables.

Let {Xi}n
i=1 be a sequence of i.i.d. Bernoulli(p) random variables. As we know

from Chapter 5, their sum Sn =
∑n

i=1 Xi has a binomial(n, p) distribution. Since
each summand has moment generating function MXi

(t) = (1 − p) + pet, property
(iv) implies that the moment generating function of a binomial(n, p) random
variable is

MSn
(t) =

n∏
i=1

MXi
(t) = ((1 − p) + pet)n.

■

■ Example Sums of independent normal random variables.

In Chapter 6, we claimed that the sum of independent normal random variables is
also normal. We now have the tools to prove this. Suppose that X ∼ N(𝜇X , 𝜎

2
X) and

Y ∼ N(𝜇Y , 𝜎
2
Y ) are independent. Then by property (iv) and equation (7.A.4),

MX+Y (t) = MX(t)MY (t) = e𝜇Xt+𝜎2
X

t2∕2 e𝜇Y t+𝜎2
Y

t2∕2 = e(𝜇X+𝜇Y )t+(𝜎2
X
+𝜎2

Y
)t2∕2

.

Thus equation (7.A.4) implies that X + Y ∼ N(𝜇X + 𝜇Y , 𝜎2
X + 𝜎2

Y ). ■
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6 CHAPTER 7 The Central Limit Theorem

Continuity property (v) says that if the moment generating functions MXi
of a

sequence of random variables {Xi}n
i=1 converges pointwise to the moment gener-

ating function MX of some random variable X, then the former random variables
converge in distribution to the latter one. This property, which like property (i) is
not easy to prove,5 justifies the final step in the proof of the central limit theorem.

7.A.2 Proof of the central limit theorem

We now present a proof of the central limit theorem for the case in which the mo-
ment generating function of the trials Xi exists on some interval (−𝜀, 𝜀). The proof
is based on the properties of moment generating functions discussed above, as well
as two facts from calculus. The first is the second-order Taylor approximation for
a smooth function g about the point 0:

(7.A.5) g(x) = g(0) + g′(0)x + 1
2
g′′(0)x2 + O(x3).

Here O(x3) is a term that approaches 0 at least as fast as x3 as x ap-
proaches 0. The second is the following fact from calculus, an extension of
the continuous-compounding characterization (8.2) of ex:

(7.A.6) If lim
n→∞

an = a, then lim
n→∞

(
1 + an

n

)n
= ea.

We prove this fact at the end of the section.
Now consider the i.i.d. sequence {Xi}∞i=1 with E(Xi) = 𝜇 and Var(Xi) = 𝜎2.

To simplify the calculations, we introduce the random variables Yi = (Xi − 𝜇)∕𝜎,
so that E(Yi) = 0 and Var(Yi) = 1. Letting Z have a standard normal distribution,
we would like to show that

(7.A.7)
1√
n

n∑
i=1

Yi

d
→ Z as n → ∞.

Equation (7.A.7) is the conclusion of the central limit theorem for the
i.i.d. sequence {Yi}∞i=1. Combining (7.A.7) with the shifting and scaling
properties of the normal distribution yields the central limit theorem for the
original sequence {Xi}∞i=1.

We analyze the moment generating function of the left-hand side of (7.A.7).
Properties (iii) and (iv) imply that

M 1√
n

∑n
i=1Yi

(t) = M∑n
i=1Yi

( t√
n
) =

(
MY1

( t√
n
)
)n

.

5Again, see Section 30 of Billingsley (footnote 3).
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7.A Appendix: Proof of the Central Limit Theorem 7

By fact (ii) and the fact that Var(X) = E(X2) − (E(X))2 (see (4.15)),

M′
Y1
(0) = E(Y1) = 0 and

M′′
Y1
(0) = E(Y2

1 ) = Var(Y1) + (E(Y1))2 = 1 + 0 = 1.

Applying the Taylor approximation (7.A.5) shows that for each fixed t in some
small enough interval (−𝜀, 𝜀),

MY1
( t√

n
) = MY1

(0) + M′
Y1
(0) ( t√

n
− 0) + 1

2
M′′

Y1
(0) ( t√

n
− 0)2 + O( 1

n3∕2 )

= 1 + 0 + 1
2

t2

n
+ O( 1

n3∕2 ),

where O(n3∕2) is an expression that approaches 0 at least as fast as n3∕2 as n grows
large. Using (7.A.6), we conclude that for all t ∈ (−𝜀, 𝜀),

lim
n→∞

M 1√
n

∑n
i=1Yi

(t) = lim
n→∞

(
MY1

( t√
n
)
)n

= lim
n→∞

(
1 + 1

n

(
t2

2
+ O( 1√

n
)
))n

= et2∕2.

Since this is the moment generating function for the standard normal distribution,
this calculation and facts (v) and (i) prove the theorem.

C H A R A C T E R I S T I C F U N C T I O N S .

The proof of the central limit theorem presented above only applies to sequences of i.i.d. random
variables whose moment generating function exists. This rules out random variables for which
the probabilities of outcomes quite far from zero do not vanish quickly enough.6

To prove the central limit theorem using only the assumption that the trials have finite
variance, one replaces arguments based on moment generating functions with ones based on
characteristic functions. The characteristic function of random variable X is defined for all
t ∈ (−∞,∞) by

(7.A.8) 𝜙(t) = E(eitX),

(continued)

6One distribution with a finite variance whose moment generating function does not exist is the
lognormal distribution, introduced in Exercise 6.M.6.
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8 CHAPTER 7 The Central Limit Theorem

(continued)

where i is the imaginary unit.7 The characteristic function can separated into its real and
imaginary parts by applying Euler’s formula, eix = cos x + i sin x, to (7.A.8):

(7.A.9) 𝜙(t) = E(cos(tX)) + i E(sin(tX)).

Since characteristic functions are defined using complex numbers, working with them requires
some use of complex variable theory, although only a few basic facts are actually needed.

Apart from this complication, working with characteristic functions has many advantages.
Characteristic functions satisfy analogues of the five properties of moment generating functions
listed above. But unlike moment generating functions, characteristic functions are guaranteed to
exist: expression (7.A.9) implies that for all t ∈ (−∞,∞), 𝜙(t) is a point in the unit disk in the
complex plane.

In addition, there are general formulas that allow one to recover a random variable’s
distribution directly from its characteristic function. As an illustration, suppose that the random
variable X has density function f. Given f, we can compute the characteristic function 𝜙 using the
definition

𝜙(t) = E(eitX) = ∫
∞

−∞
eitxf (x) dx.

Conversely, if we know the characteristic function 𝜙, we can compute the density function f
using the inversion formula8

f (x) = 1
2𝜋 ∫

∞

−∞
e−itx𝜙(t) dt.

Because of these useful properties, characteristic functions are the standard tool for proving
the central limit theorem and related results.

Proof that lim
n→∞

an = a implies that lim
n→∞

(1 + an

n
)n = ea.

We show first that for x > 1 −
√

2∕2,

x − x2 ≤ ln(1 + x) ≤ x.

To prove these inequalities, observe that f (x) = x − x2, g(x) = ln(1 + x), and h(x) =
x all equal 0 and have slope 1 at x = 0. The second inequality then follows from the
concavity of the logarithm function. For the first inequality, note that f ′′(x) = −2 is

7Away from probability theory, the characteristic function is known as the Fourier transform.
8There is a general inversion formula that allows one to recover the distribution of any random
variable from its characteristic function—see Billingsley (footnote 3), Section 26.
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less than g′′(x) = −1∕(1 + x)2 when x > 1 −
√

2∕2. Since f ′(0) = g′(0), the funda-
mental theorem of calculus implies that f ′(x) > g′(x) when x ∈ (1 −

√
2∕2, 0) and

that f ′(x) < g′(x) when x > 0. Then since f (0) = g(0), the first inequality follows.
Now taking the logarithm of (1 + an

n
)n and applying the inequalities shows

that for n large enough,

n
(

an

n
− ( an

n
)2
) ≤ n ln(1 + an

n
) ≤ n( an

n
).

Since the leftmost expression is an − an(an∕n) and the rightmost is an, the fact that
an converges to a implies that both of these expressions converge to a. This in turn
implies that n ln(1 + an

n
) converges to a, which proves the claim.

KEY TERMS AND CONCEPTS

moment generating function
(p. 1)

moments (p. 4)
characteristic function (p. 7)

inversion formula (p. 8)

Exercises

Exercise 7.A.1. Random variable N has a Poisson(𝜇) distribution if

(8.3) P(N = k) = e−𝜇𝜇k

k!
for k ∈ {0, 1, 2, 3,…}

Many properties of the Poisson distribution are derived using the series formula
for ex:

(8.1)
∞∑

k=0

xk

k!
= ex.

In Chapter 8, we use this formula to show that (8.3) defines a legitimate probability
distribution, and to show that E(N) = Var(N) = 𝜇.

a. Use formula (8.1) to express the moment generating function for N in a
simple form.

b. Using your answer to part (a), show that if Sn is the sum of n independent
Poisson(𝜇) random variables it has a Poisson(n𝜇) distribution.

c. Use your answer to part (a) and formula (8.1) to show that if Sn has a
Poisson(n𝜇) distribution, then (Sn − n𝜇)∕√n𝜇 converges in distribution to
Z ∼ N(0, 1).
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10 CHAPTER 7 The Central Limit Theorem

d. Explain the connection between your answer to part (c) and the central
limit theorem.

Exercise 7.A.2. Suppose that X ∼ uniform(0, 1), so that E(X) = 1
2

and

Var(X) = 1
12

.

a. What is the moment generating function of X? (Be careful not to write
down any undefined expressions. Once you see the problem here, you
need not be as careful in the remaining parts of the question.)

b. Let Sn be the sum of n i.i.d. uniform(0, 1) random variables. What is the
moment generating function of Sn?

c. Using your answers to the previous parts, determine the moment
generating function of (Sn −

n
2
)∕
√

n
12

.
d. Using your answer to part (c), the continuity property of moment

generating functions, and the Taylor expansion

ex − e−x

2
= x + x3

3!
+ x5

5!
+ x7

7!
+ · · · ,

show that (Sn −
n
2
)∕
√

n
12

converges in distribution to a standard normal
random variable.


