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6Continuous Random Variables
and Distributions

6.A Appendix: Continuous Distributions

We learned in Chapters 3 and 4 that random variables are functions defined on
a probability space. But our subsequent analyses have shown that for many pur-
poses, it is enough to focus on the random variables’ distributions and joint dis-
tributions. In this appendix and the next, we provide a calculus-based treatment
of the distributions of continuous random variables, explaining how the machin-
ery from Chapters 3 and 4 is extended to random variables whose distributions
are defined by density functions. As a rule, formulas involving expectations of
continuous random variables are the same as ones for discrete random variables,
but with integrals replacing sums. Our focus below is on properties for which the
continuous analysis differs from the discrete one in a noteworthy way.

6.A.1 Cumulative distribution functions

As we explained in Section 6.2, the distribution of any random variable X can be
completely described by specifying the cumulative probabilities P(X ≤ x) for all
real numbers x ∈ ℝ. We therefore define the (cumulative) distribution function
(or cdf) of a random variable X to be the function F∶ (−∞,∞) → [0, 1] given by

(6.A.1) F(x) = P(X ≤ x) for all x ∈ ℝ.

A distribution function completely describes a random variable’s distribution,
in that one can use it and the properties of probability measures to determine the
ex ante probability that X lies in any naturally occurring set of real numbers.1

For instance, if X has distribution function F, then the probability that X takes a
value in the half-open interval (a, b] is

(6.A.2) P(X ∈ (a, b]) = P(X ≤ b) − P(X ≤ a) = F(b) − F(a),

where the first equality follows from the additivity axiom for disjoint events.
Cumulative distribution functions are characterized by three properties.

1By a “naturally occurring set of real numbers,” we mean a Borel set. Borel sets include any set one
would encounter in applications. For more details, see Patrick Billingsley, Probability and Measure,
3rd ed., Wiley, 1995, Sections 2 and 10.

1
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2 CHAPTER 6 Continuous Random Variables and Distributions

Characterization of cumulative distribution functions.
A function F is the cumulative distribution function of some random variable

if and only if it satisfies the following three properties:

(i) F is nondecreasing: x < y implies that F(x) ≤ F(y);
(ii) limx→−∞ F(x) = 0 and limx→∞ F(x) = 1;

(iii) F is continuous from the right: for all x ∈ X, limy↓x F(y) = F(x).
It is not too hard to understand why a cumulative distribution function must satisfy
properties (i)–(iii). Property (i) says that if x is less than y, then P(X ≤ x) is at most
P(Y ≤ y). Property (ii) amounts to the requirement that P(X ∈ (−∞,∞)) equal
one. Property (iii) says if y approaches x from above, then P(X ≤ y) approaches
P(X ≤ x). Notice that distribution functions need not be continuous from below:
if z approaches x from below, we can only conclude that limz↑x P(X ≤ z) ≤ P(X ≤
x); the inequality will be strict if P(X = x) is positive and will be an equality if
P(X = x) is zero.2

The italicized statement above also makes a converse claim: namely, that if
a function F satisfies properties (i)–(iii), then there is a random variable whose
distribution function is F. To prove this result, we must construct a suitable random
variable as a function on a sample space—see Exercise 6.A.6.

6.A.2 Density functions

Continuous random variables are those whose distributions can be described
by (probability) density functions, which are sometimes called pdfs for short.
We now state the definition of density functions using calculus. For concision, we
use the notations ℝ = (−∞,∞) and ℝ+ = [0,∞) for the sets of real numbers and
nonnegative real numbers, respectively.

Definition.
The random variable X has density function f ∶ ℝ → ℝ+ if

(6.A.3) P(X ∈ (a, b]) = ∫
b

a
f (s)ds for all (a, b] ⊂ ℝ.

For this definition to make sense, the density function must satisfy the total prob-
ability condition

(6.A.4) ∫
∞

−∞
f (x) dx = 1.

Equations (6.A.2) and (6.A.3) imply that density and distribution functions
are related by

F(b) − F(a) = ∫
b

a
f (s) ds.

2The fact that F is continuous from the right is a consequence of our having defined distribution
functions (6.A.1) using a less-than-or-equal-to sign. Proving that distribution functions satisfy
conditions (ii) and (iii) requires us to use the countable additivity axiom; see Exercises 6.A.4
and 6.A.5.
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6.A Appendix: Continuous Distributions 3

When the density function f is continuous, this equation and the fundamental
theorem of calculus imply that f (x) = d

dx
F(x) for all x ∈ ℝ; if f is only piecewise

continuous, as in the case of uniform density functions (see below), this relation
holds at all points of continuity of f .

6.A.3 Expected values

The expected value of a discrete random variable is

E(X) =
∑

x

x P(X = x).

In words, E(X) is the weighted average outcome of X.
The expected value of a continuous random variable is defined in an analogous

way, but with the sum replaced by an integral, and with probability masses on
discrete outcomes replaced by densities over continuous ones:

(6.A.5) E(X) = ∫
∞

−∞
xf (x) dx.

Suppose we define a new random variable as a function of X, say Y = g(X).
Then the expected value of Y is

(6.A.6) E(Y) = ∫
∞

−∞
g(x) f (x) dx.

Since the variance of a random variable is the weighted average of the squared
deviations of the outcomes from their mean, we can apply Q: which one formula
to obtain a formula for the variance of a continuous random variable:

(6.A.7) Var(X) = E
(
(X − E(X))2

)
= ∫

∞

−∞
(x − E(X))2f (x) dx.

Here are the basic examples of continuous distributions from Chapters 6
and 8.

■ Example Uniform distributions.

The random variable X has a uniform distribution with parameters l and h (denoted
X ∼ uniform(l, h)) if its density function is constant on the interval [l, h] and is zero
elsewhere. That is,

f (x) =

{
1

h−l
if x ∈ [l, h];

0 otherwise.

Evaluating formulas (6.A.5) and (6.A.7) shows that E(X) = h+l
2

and Var(X) =
(h−l)2

12
(see Exercise 6.M.3). ■
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4 CHAPTER 6 Continuous Random Variables and Distributions

■ Example Exponential distributions.

The random variable T has an exponential distribution with rate 𝜆 > 0 (denoted
T ∼ exponential(𝜆)) if its density function is

(6.A.8) f (t) =

{
𝜆e−𝜆t if t ≥ 0;
0 otherwise.

Evaluating formulas (6.A.5) and (6.A.7) shows that E(T) = 1
𝜆

and Var(T) = 1
𝜆2

(see Exercise 8.M.3). ■

■ Example Normal distributions.

The random variable X has a normal distribution with mean 𝜇 and variance 𝜎2

(denoted X ∼ N(𝜇, 𝜎2)) if its density function is

f (x) = 1√
2𝜋 𝜎

e−(x−𝜇)
2∕2𝜎2

.

The normal distribution with 𝜇 = 0 and 𝜎2 = 1 is the standard normal distribu-
tion. Standard normal random variables are typically denoted Z, and have density
function

(6.A.9) f (z) = 1√
2𝜋

e−z2∕2.

For the calculation verifying that a random variable with density function (6.A.9)
has mean 0 and variance 1, see Exercise 6.M.8. We can proceed from this fact to
the conclusion that a N(𝜇, 𝜎2) random variable has mean 𝜇 and variance 𝜎2 using
formula (6.A.10) below; see Exercise 6.A.2. ■

6.A.4 Transformations of density functions

If X is a continuous random variable and 𝜙 is a smooth function from the real line
to itself, then Y = 𝜙(X) is also a continuous random variable. If X has density f ,
how do we determine the density of Y? We first consider the case in which 𝜙 is a
monotone function (i.e., an increasing or decreasing function).

The density function of a transformed random variable.
Let the random variable X have density f , and let X = {x∶ f (x) > 0}. Let Y =

𝜙(X), where𝜙∶ ℝ → ℝ is monotone and the derivative of its inverse is continuous.
Then the density of Y is defined on 𝜙(X) by

(6.A.10) g(y) = |||(𝜙−1)′(y)||| f (𝜙−1(y))

and equals 0 elsewhere.
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6.B Appendix: Continuous Joint Distributions 5

The second term in (6.A.10) evaluates the density function f at the point 𝜙−1(y),
which is the x value that the function 𝜙 maps to y. Since 𝜙 is monotone, there is
only one such x value.

To understand the initial scaling term, |(𝜙−1)′(y)|, imagine that 𝜙′(x0) > 0 is
large for some x0 ∈ X. Then when x is close to x0, y = 𝜙(x) is about 𝜙′(x0) times
as far away from y0 as x is from x0. Because of this, the transformation 𝜙 takes
the mass that density function f places near x0 and spreads it more thinly over a
wider interval around y0. This thinning out is captured by the factor (𝜙−1)′(y0).
By a standard calculus result this factor equals 1∕𝜙′(x0); since we assumed at the
start that 𝜙′(x0) is large, this factor is small, as we anticipated.

■ Example Let T ∼ exponential(𝜆), so that the density of T on [0,∞) is f (t) =
𝜆e−𝜆t. Let U = cT for some c > 0. Then 𝜙(t) = ct, so the density of U on [0,∞) is

g(u) = 1
c

f
(

u
c

)
= 𝜆

c
e−(𝜆∕c)u.

Thus U has an exponential( 𝜆
c
) distribution. ■

If the transformation 𝜙 is not monotone, then there will be multiple x values
that are mapped by 𝜙 to a single y value. Thus to determine the density of Y at y,
we must add up terms like (6.A.10) corresponding to each x value that is mapped
to y. Specifically, if X can be partitioned into intervals X1,… ,X k on which 𝜙 is
monotone, then the density of Y at y ∈ 𝜙(X) is

(6.A.11) g(y) =
∑

i∶ y∈𝜙(X i)
|(𝜙−1

i )′(y)| ⋅ f (𝜙−1
i (y)).

Here 𝜙i denotes the restriction of 𝜙 to X i, a function that is monotone by construc-
tion.

6.B Appendix: Continuous Joint Distributions

Here we discuss joint distributions of multiple continuous random variables.
To keep the notation simple, we focus on the bivariate case. Moving to the case
of n random variables does not introduce too many novelties, but does complicate
the notation.3

3For further discussion and examples, see George Casella and Roger L. Berger, Statistical Inference,
2nd edition, Duxbury/Thomson, 2002, Chapter 4.
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6 CHAPTER 6 Continuous Random Variables and Distributions

6.B.1 Joint distribution functions

Let ℝ2 = {(x, y)∶ x, y ∈ ℝ} denote the set of points in the plane. The joint
distribution function of random variables X and Y is the function F∶ ℝ2 → [0, 1]
defined by

(6.B.1) F(x, y) = P(X ≤ x,Y ≤ y).

A distribution function completely describes the joint distribution of a pair of ran-
dom variables, in that one can use it and the properties of probability measures to
determine the ex ante probability that the pair (X,Y) lies in any naturally occurring
set in the plane.4 For instance, one can use the additivity axiom for disjoint events
to show that

(6.B.2)
P(X ∈ (a1, b1],Y ∈ (a2, b2]) = F(b1, b2) − F(b1, a2) − F(a1, b2) + F(a1, a2).

(See Exercise 6.B.1).
Joint distribution functions are characterized by analogues of the three prop-

erties that characterize distribution functions of a single variable, except that these
properties now must hold for each component of F separately: specifically, for the
functions F(⋅, y)∶ ℝ → [0, 1] for each fixed y ∈ ℝ and the functions F(x, ⋅)∶ ℝ →
[0, 1] for each fixed x ∈ ℝ.

6.B.2 Joint density functions

The joint distribution of a pair of continuous random variables is described by its
joint density function.

Definition.
The random variables X and Y have joint density function f ∶ ℝ2 → ℝ+ if

P
(

X ∈ (a1, b1], Y ∈ (a2, b2]
)
= ∫

b2

a2
∫

b1

a1

f (x, y)dx dy(6.B.3)

for all (a1, b1], (a2, b2] ⊂ ℝ.

For this definition to make sense, the density function must satisfy the total prob-
ability condition

(6.B.4) ∫
∞

−∞ ∫
∞

−∞
f (x, y) dx dy = 1.

Equations (6.B.1) and (6.B.3) together imply that

F(x, y) = ∫
y

−∞ ∫
x

−∞
f (s, t) ds dt.

4“Naturally occurring set” again means Borel set; see footnote 1.
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6.B Appendix: Continuous Joint Distributions 7

Thus if f is continuous, the fundamental theorem of calculus implies that it is equal
to the cross partial derivative of F:

f (x, y) = 𝜕2F
𝜕x 𝜕y

(x, y).

6.B.3 Marginal density functions

Suppose we know the joint density function f of the pair (X,Y) but are only inter-
ested in the properties of X and Y in isolation. This information is contained in the
marginal density functions of X and Y , which are defined as follows.

Definition.
The marginal density functions of X and Y are

(6.B.5) fX (x) = ∫
∞

−∞
f (x, y)dy and fY(y) = ∫

∞

−∞
f (x, y)dx.

It follows easily from the total probability condition (6.B.4) that fX and fY
are legitimate density functions, in that they satisfy the total probability condition
(6.A.4). Put differently, marginal density functions are instances of the univariate
density functions from Section 6.A.

6.B.4 Expected values

If the pair of random variables (X,Y) has joint density function f , then the expected
values of X and Y can be computed as

E(X) = ∫
∞

−∞ ∫
∞

−∞
xf (x, y) dx dy and E(Y) = ∫

∞

−∞ ∫
∞

−∞
yf (x, y) dx dy.

Substituting in definition (6.B.5) allows us to write these expected values in terms
of the marginal densities of X and Y:

E(X) = ∫
∞

−∞
xfX(x) dx and E(Y) = ∫

∞

−∞
yfY (y) dy.

Of course, these equations are just instances of equation (6.A.5) from the univari-
ate setting.

Suppose we define a new random variable that is a function of both X and Y ,
say Z = g(X,Y). Then the expected value of Z is

(6.B.6) E(Z) = ∫
∞

−∞ ∫
∞

−∞
g(x, y) f (x, y) dx dy.

Since the distribution of Z generally depends on the comovements of X and Y , one
generally cannot replace formula (6.B.6) with one stated in terms of the marginal
densities fX and fY .
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8 CHAPTER 6 Continuous Random Variables and Distributions

Formula (6.B.6) provides us with an expression for the covariance of X and
Y in terms of their joint density function:

Cov(X,Y) = E
(
(X − E(X)) (Y − E(Y))

)
= ∫

∞

−∞ ∫
∞

−∞
(x − E(X)) (y − E(Y)) f (x, y) dx dy.

6.B.5 Conditional density, mean, and variance functions

Sometimes we are interested in the behavior of one random variable in the pair
(X,Y) after having learned the realization of the other. In the context of continuous
random variables, such information is provided by conditional density functions.
These in turn allow us to define conditional mean functions, which play a basic
role in regression analysis and econometrics (see Chapters 19 and 20).

Definitions.
Let X = {x∶ fX (x) > 0} and let Y = {y∶ fY(y) > 0}. For x ∈ X, the conditional den-
sity function of Y given X = x is the function f ( ⋅ | x)∶ ℝ → ℝ+ defined by

(6.B.7) f (y | x) =
f (x, y)
fX (x)

.

The conditional mean function E(Y | X = ⋅ ) ∶ X → ℝ and the conditional vari-
ance function Var(Y | X = ⋅ ) ∶ X → ℝ are defined by

E(Y | X = x) = ∫
∞

−∞
y f (y | x)dy and

Var(Y | X = x) = ∫
∞

−∞

(
y − E(Y |X = x)

)2
f (y | x)dy.

Symmetrically, the conditional density of X given Y = y is the function f ( ⋅ | y)∶ ℝ →
ℝ+ defined by

f (x | y) =
f (x, y)
fY(y)

.

The conditional mean function E(X | Y = ⋅ ) ∶ Y → ℝ and the conditional variance
function Var(X | Y = ⋅ ) ∶ Y → ℝ are defined by

E(X | Y = y) = ∫
∞

−∞
x f (x | y)dx and

Var(X | Y = y) = ∫
∞

−∞

(
x − E(X |Y = y)

)2
f (x | y)dx.

Integrating (6.B.7) with respect to x shows that conditional density functions
are themselves univariate density functions in that they satisfy total probability
condition (6.A.4).
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6.B Appendix: Continuous Joint Distributions 9

Intuitively, the conditional density function f ( ⋅ | x) describes the distribution
of the random variable Y conditional on the event that X = x. Notice, however, that
we are here conditioning on an event with probability zero, in violation of the def-
inition of conditional probability from Chapter 2. Thus this intuitive interpretation
of conditional density should be regarded with caution.5

As their names indicate, the conditional expectation function E(Y |X = ⋅ )
and the conditional variance function Var(Y |X = ⋅ ) describe how the conditional
expectation and conditional variance of Y vary as the realization of X changes.
These functions are of fundamental importance in econometrics.

■ Example Suppose that the random variable pair (X,Y) has joint density function

f (x, y) =

{
e−y if y ≥ x ≥ 0,

0 otherwise.

To verify that this is a legitimate density function, we observe that

∫
∞

−∞ ∫
∞

−∞
f (x, y) dx dy = ∫

∞

0
e−y ∫

y

0
dx dy = ∫

∞

0
ye−y dy

= −ye−y|||∞0 − ∫
∞

0
(−e−y) dy = −e−y|||∞0 = 1.

The marginal density of X is 0 for x < 0 and is

∫
∞

−∞
f (x, y) dy = ∫

∞

x
e−y dy = −e−y|||∞x = e−x

for x ≥ 0. In the latter case, the conditional density of Y given X = x is

(6.B.8) f (y | x) =
f (x, y)
fX(x)

=

{
e−(y−x) if y ≥ x,

0 otherwise.

Comparing this to (6.A.8) (or applying transformation rule (6.A.10)) shows that
(6.B.8) is the density of a random variable of the form T + x, where T has an
exponential(1) distribution. It follows from this or from a direct calculation that

E(Y |X = x) = 1 + x and Var(Y |X = x) = 1. ■

5Being precise about these matters requires the measure-theoretic definition of conditional
probability, a definition that is a cornerstone of modern probability theory. An excellent account
can be found in Section 33 of Billingsley (see footnote 1); see especially Theorem 33.3 and
Examples 33.5 and 33.12.
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10 CHAPTER 6 Continuous Random Variables and Distributions

■ Example Bivariate normal distributions.

The random variable pair (X,Y) has a bivariate normal distribution with pa-
rameters 𝜇X , 𝜇Y , 𝜎2

X , 𝜎2
Y , and 𝜌 ∈ (−1, 1) if its joint density function is

(6.B.9)

f (x, y) = 1

2𝜋𝜎X𝜎Y

√
1−𝜌2

exp

(
− 1

2(1−𝜌2)

((
x−𝜇X

𝜎X

)2
−2𝜌

(
x−𝜇X

𝜎X

)(
y−𝜇Y

𝜎Y

)
+
(

y−𝜇Y

𝜎Y

)2
))

.

For some computations, it is more convenient to express this joint density in terms
of the covariance 𝜎X,Y = 𝜌𝜎X𝜎Y rather than in terms of 𝜌. To do so compactly, we
write |Σ| = 𝜎2

X𝜎
2
Y − 𝜎2

X,Y and rearrange (6.B.9) to obtain

(6.B.10)
f (x, y) = 1

2𝜋
√|Σ| exp

(
− 1

2|Σ| (𝜎2
Y (x − 𝜇X)2−2𝜎X,Y (x − 𝜇X)(y −𝜇Y ) + 𝜎2

X(y − 𝜇Y )2
))
.

Bivariate normal random variables enjoy the following properties:

(i) The marginal distributions of X and Y are N(𝜇X , 𝜎
2
X) and N(𝜇Y , 𝜎

2
Y ).

(ii) The correlation between X and Y is 𝜌.
(iii) Any linear combination aX + bY of X and Y has a univariate normal

distribution with the appropriate mean and variance:

aX + bY ∼ N(a𝜇X + b𝜇Y , a
2𝜎2

X + b2𝜎2
Y + 2ab𝜎X,Y ).

(iv) The conditional distribution of Y given X = x is normal.
Specifically,

Y|X=x ∼ N
(
𝜇Y + 𝜌

𝜎Y

𝜎X
(x − 𝜇X), 𝜎2

Y (1 − 𝜌2)
)
.

Thus the conditional mean and conditional variance functions for
Y are E(Y |X = x) = 𝜇Y + 𝜌

𝜎Y

𝜎X
(x − 𝜇X) and Var(Y |X = x) =

𝜎2
Y (1 − 𝜌2).

Symmetrically, the conditional distribution of X given Y = y is

X|Y=y ∼ N
(
𝜇X + 𝜌

𝜎X

𝜎Y
(y − 𝜇Y ), 𝜎2

X(1 − 𝜌2)
)
.

For derivations of these properties, see Exercise 6.B.11.
To obtain an expression for the bivariate normal density that generalizes to

settings with more than two random variables requires us to use matrices. Define
the covariance matrix of the pair (X,Y) by

Σ =
(

𝜎2
X 𝜎X,Y

𝜎X,Y 𝜎2
Y

)
.
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6.B Appendix: Continuous Joint Distributions 11

Then the determinant of Σ is |Σ| = 𝜎2
X𝜎

2
Y − 𝜎2

X,Y (as above), and the inverse
of Σ is

Σ−1 = 1|Σ|
(

𝜎2
Y −𝜎X,Y

−𝜎X,Y 𝜎2
X

)
.

We can thus write (6.B.10) as

f (x, y) = 1√
(2𝜋)2|Σ| exp

(
− 1

2

( x−𝜇X
y−𝜇Y

)′ Σ−1
( x−𝜇X

y−𝜇Y

))
.

■

6.B.6 Transformations of joint density functions

Let (X,Y) be a pair of random variables with joint density f . If 𝜙 is a function
from ℝ2 to itself, then we can define a new pair of random variables U and V by
setting (U,V) = 𝜙(X,Y) (i.e., by setting U = 𝜙1(X,Y) and V = 𝜙2(X,Y)). If the
function 𝜙 is smooth, then the random variables U and V will be continuous, and,
in particular, will admit a joint density function.

As in the univariate case, there is a formula that expresses the joint density of
(U,V) in terms of the joint density of (X,Y). Because we are now in a multivari-
ate setting, this formula makes use of Jacobian determinants.6 The result below
focuses on the case in which the transformation 𝜙 is invertible.

The joint density function of a transformed random variable pair.
Let the random variable pair (X,Y) have joint density f , and let

A = {(x, y)∶ f (x, y) > 0}. Let (U,V) = 𝜙(X,Y), where 𝜙∶ A → ℝ2 is one-to-
one with range B = {𝜙(x, y)∶ (x, y) ∈ A} and with differentiable inverse. Let

D𝜙−1(u, v) =
⎛⎜⎜⎝
𝜕𝜙−1

1
𝜕u

(u, v)
𝜕𝜙−1

1
𝜕v

(u, v)
𝜕𝜙−1

2
𝜕u

(u, v)
𝜕𝜙−1

2
𝜕v

(u, v)

⎞⎟⎟⎠ .
be the Jacobian of 𝜙−1 at (u, v). Then the joint density function of (U,V) is defined
on B by

g(u, v) = |||det D𝜙−1(u, v)||| f (𝜙−1(u, v))(6.B.11)

=
|||| 𝜕𝜙−1

1
𝜕u

(u, v)
𝜕𝜙−1

2
𝜕v

(u, v) −
𝜕𝜙−1

1
𝜕v

(u, v)
𝜕𝜙−1

2
𝜕u

(u, v)
|||| f (𝜙−1(u, v))

and equals 0 elsewhere.

As in the univariate case, the second term in (6.B.11) evaluates the original
density f at the (x, y) value that is mapped to (u, v). The initial scaling term also
follows the pattern from the univariate case; its role is to thin out or concentrate

6Since the formula includes the absolute value of a determinant, we will use the notation det A for the
determinant of matrix A.
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12 CHAPTER 6 Continuous Random Variables and Distributions

probability mass to account for the expansion or contraction of neighborhoods
under transformation 𝜙.7

If the transformation 𝜙 is not one-to-one, then to obtain the joint density of
(U,V), we must partition the domain of 𝜙 into regions on which 𝜙 is one-to-one,
as in (6.A.11) above.

We present an example applying transformation formula (6.B.11) in the next
section.

6.B.7 Independent random variables

In Chapter 3, we defined the random variables X and Y to be independent if their
joint distribution satisfies the product formula

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B).

When X and Y are continuous random variables, this product formula is required
to hold for all naturally occurring sets A and B.8 It turns out that this product rule
is equivalent to a product rule for the random variables’ joint and marginal density
functions.

Independence of continuous random variables.
Suppose the random variable pair (X,Y) has joint density f and marginal

densities fX and fY . X and Y are independent if and only if

f (x, y) = fX(x) fY (y) for all (x, y) ∈ ℝ2.

The following fact, verified in Exercise 6.B.5, is useful for determining
whether random variables with a given joint distribution are independent.

Checking independence of continuous random variables.
Suppose the random variable pair (X,Y) has joint density f . To show that

X and Y are independent, it is enough to show that their joint density can be
written as

f (x, y) = g(x)h(y) for all (x, y) ∈ ℝ2

for some functions g∶ ℝ → ℝ+ and h∶ ℝ → ℝ+.

7In more detail: The absolute value of the determinant of a matrix A ∈ ℝ2×2 describes how much
area is expanded (for |det A| > 1) or contracted (for | det A| < 1) when A is used as a linear map from
the plane ℝ2 to itself. By Taylor’s theorem, the Jacobian D𝜙(x, y) provides a linear approximation to
the action of the function 𝜙 in a neighborhood of point (x, y). Thus |det D𝜙(x, y)| describes the degree
to which the transformation 𝜙 expands or contracts area when it maps a neighborhood of (x, y) to a
larger or smaller neighborhood of (u, v) = 𝜙(x, y). Since D𝜙−1(u, v) = (D𝜙(x, y))−1 (i.e., since the
Jacobian matrix of the inverse function is the inverse of the Jacobian matrix) and since det A−1 =
1∕(det A), we have |det D𝜙−1(u, v)| = 1∕|det D𝜙(x, y)|. Thus the second term in (6.B.11) dilutes
(if |det D𝜙(x, y)| > 1, so that |det D𝜙−1(u, v)| < 1) or concentrates (if |det D𝜙(x, y)| < 1, so that|det D𝜙−1(u, v)| > 1) probability mass in a way that counterbalances the expansion or contraction
of area under 𝜙 in the vicinity of (x, y).
8This again means the Borel subsets; see footnote 1.
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■ Example Continuing an example from the previous section, suppose that the
random variable pair (X,Y) has joint density function

f (x, y) =

{
e−y if y ≥ x ≥ 0,

0 otherwise.

Let U = X and V = Y − X. What is the joint density function of (U,V)?
Here A = {(x, y)∶ f (x, y) > 0} = {(x, y)∶ y ≥ x ≥ 0} and

𝜙(x, y) =
(

x
y − x

)
=
(

1 0
−1 1

)(
x
y

)
,

and so B = {𝜙(x, y)∶ (x, y) ∈ A} = {(u, v)∶ u, v ≥ 0} ≡ ℝ2
+. In addition, we have

𝜙−1(u, v) =
(

1 0
−1 1

)−1 (
u
v

)
=
(

1 0
1 1

)(
u
v

)
=
(

u
u + v

)
, so

D𝜙−1(u, v) =
(

1 0
1 1

)
and det D𝜙−1(u, v) = 1.

Thus the transformation formula (6.B.11) shows that the joint density of (U,V) is
defined on ℝ2

+ by

g(u, v) = 1 × f (𝜙−1(u, v)) = e−(u+v) = e−ue−v

and equals 0 elsewhere. We conclude that U and V are independent random vari-
ables, each with an exponential(1) distribution.

In addition, considering the inverse transformation from (U,V) to (X,Y) re-
veals that the latter pair is comprised of an exponential(1) random variable X and
the sum of X and an independent exponential(1) random variable. ■

■ Example Independence of bivariate normal random variables.

We emphasized in Chapter 4 that zero correlation does not imply independence.
But there is an important special case in which this implication holds.

Suppose that (X,Y) is a pair of random variables with a bivariate normal ran-
dom distribution, and suppose that X and Y are uncorrelated. Then according to
equation (6.B.9), the joint density function of X and Y is

f (x, y) = 1
2𝜋𝜎X𝜎Y

exp

(
− 1

2

((
x−𝜇X

𝜎X

)2
+
(

y−𝜇Y

𝜎Y

)2
))

= 1
2𝜋𝜎X𝜎Y

exp

(
− 1

2

(
x−𝜇X

𝜎X

)2
)

exp

(
− 1

2

(
y−𝜇Y

𝜎Y

)2
)
.
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14 CHAPTER 6 Continuous Random Variables and Distributions

Thus the previous result implies that X and Y are independent. We could also have
derived this fact by examining the formulas for the conditional distributions of bi-
variate normal random variables: if 𝜌 = 0, then Y|X=x has a N(𝜇Y , 𝜎

2
Y ) distribution

regardless of the value of x.
The hypothesis that X and Y follow a bivariate normal distribution is impor-

tant here. If all we know is that X and Y are each normally distributed, then zero
correlation would not imply independence. It is a good exercise to construct a
counterexample that illustrates this point. ■

All of the properties of independent random variables described in Chapters 3
and 4 remain true in the continuous case. In particular, functions of independent
random variables are independent random variables:

If X and Y are independent, then f (X) and g(Y) are independent.

Also, the expectation of the product of independent random variables equals the
product of their expectations:

If X and Y are independent, then E(XY) = E(X)E(Y).

These properties of pairs of independent random variables generalize directly to
collections of many independent random variables.

6.B.8 Sums of independent random variables

As we have seen, sums of independent random variables are used in a wide range
of applications of probability theory. If X and Y are independent discrete random
variables, the distribution of their sum S = X + Y is described by

(6.B.12) P(S = s) =
∑

x

P(X = x,Y = s − x) =
∑

x

P(X = x)P(Y = s − x).

For each outcome s, the first equality aggregates the probabilities of the outcome
pairs (x, y) = (x, s − x)whose components add up to s. The second equality follows
from the product rule for independent random variables.

When the random variables being added have densities, there is an expression
analogous to (6.B.12) for the density of the sum.

The density of the sum of two independent random variables.
Let X and Y be independent random variables with densities fX and fY . Then

the sum S = X + Y has density

(6.B.13) fS(s) = ∫
∞

−∞
fX(x) fY (s − x) dx.
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This formula is a consequence of the transformation formula (6.B.11): see
Exercise 6.B.9. Away from probability theory, the function fS is called the
convolution of the functions fX and fY .

■ Example Let X and Y be independent normal random variables with mean 0
and variances 𝜎2

X and 𝜎2
Y . By the convolution formula, the density function of the

sum X + Y is

fS(s) = ∫
∞

−∞

1√
2𝜋 𝜎X

exp

(
−x2

2𝜎2
Y

)
⋅ 1√

2𝜋 𝜎Y
exp

(
−(s−x)2

2𝜎2
Y

)
dx.

Evaluating this integral yields

fS(s) =
1√

2𝜋 (𝜎2
X
+𝜎2

Y
)

exp

(
−s2

2(𝜎2
X
+𝜎2

Y
)

)
(see Exercise 6.B.10). Thus S has a normal distribution with mean 0 and variance
𝜎2

X + 𝜎2
Y , as stated in Section 6.6.1. We will see that this fact can be derived more

easily using tools introduced in Appendix 7.A. ■

The fact that the convolution formula (6.B.13) contains a possibly difficult
integral can make it cumbersome to work with, and in fact the discrete formula
(6.B.12) can be just as much trouble. In Appendix 7.A, we introduce machin-
ery that can make working with the distributions of sums of independent random
variables strikingly simple.

KEY TERMS AND CONCEPTS

(cumulative) distribution
function (cdf) (p. 1)

(probability) density function
(pdf) (p. 2)

transformations of density
functions (p. 4)

joint distribution function
(p. 6)

joint density function
(p. 6)

marginal density functions
(p. 7)

conditional density function
(p. 8)

conditional mean function
(p. 8)

conditional variance function
(p. 8)

bivariate normal distribution
(p. 10)

covariance matrix
(p. 10)

transformations of
joint density functions
(p. 11)

independent random variables
(p. 12)

convolution (p. 15)
Box-Muller transform

(p. 18)
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Exercises

Appendix 6.A exercises
Exercise 6.A.1. Let X be a continuous random variable. Use definitions (6.A.5)
and (6.A.7) and basic properties of integrals to prove that E(aX + b) = aE(X) + b
and that Var(aX + b) = a2 Var(X).

Exercise 6.A.2. Let Z be a standard normal random variable, so that its density
function is f (z) = e−z2∕2∕

√
2𝜋. Exercise 6.M.8 shows that E(Z) = 0 and that

Var(Z) = 1.
Let X = 𝜎Z + 𝜇 for some real number 𝜇 and some 𝜎 > 0.
a. Use Exercise 6.A.1 to show that E(X) = 𝜇 and Var(X) = 𝜎2.
b. Use transformation formula (6.A.10) to show that X has a N(𝜇, 𝜎2)

distribution.
Together, parts (a) and (b) establish that a N(𝜇, 𝜎2) random variable really

does have mean 𝜇 and variance 𝜎2.

Exercise 6.A.3. Let X ∼ uniform(0, 1), and let Y = − 1
𝜆

ln X.

a. Use transformation formula (6.A.10) to show that Y ∼ exponential(𝜆).
b. Show that Y ∼ exponential(𝜆) directly by computing its cumulative

distribution function.
c. Now suppose that Y ∼ exponential(𝜆). What transformation of Y has a

uniform(0, 1) distribution?

Exercise 6.A.4. Recall the countable additivity axiom:

(A3∗)

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai) for any sequence of disjoint events {A1,A2,A3,…}.

a. Use axiom (A3∗) to show that probability measures are continuous from
below: If the events {Ai}∞i=1 satisfy A1 ⊆ A2 ⊆ · · · and ∪∞

i=1Ai = A, then
limi→∞ P(Ai) = P(A).

b. Show that probability measures are continuous from above: If the events
{Bi}∞i=1 satisfy B1 ⊇ B2 ⊇ · · · and ∩∞

i=1Bi = B, then limi→∞
P(Bi) = P(B). (Hint: Use De Morgan’s law (

⋂
i AC

i =
(⋃

i Ai

)C
;

compare Exercise 2.2.7) part (a), and the complement rule.)

Exercise 6.A.5. Let F be the distribution function of some random variable X.
In this exercise, we use the consequences of countable additivity derived in
Exercise 6.A.4 to show that F must satisfy the properties listed in Section 6.A.1.

a. Use both parts of Exercise 6.A.4 to show that limx→−∞ F(x) = 0 and
limx→∞ F(x) = 1.

b. Use Exercise 6.A.4(b) to show that F is continuous from the right: for all
x ∈ X, limy↓x F(y) = F(x).
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Exercise 6.A.6. Let F be a function that satisfies properties (i)-(iii) from Section
6.A.1. Let S = (0, 1] and let P be the probability measure on S that agrees with
length, in that P((a, b]) = b − a for (a, b] ⊆ (0, 1]. Define the random variable X by
X(s) = sup{y ∶ F(y) < s}. This random variable has distribution function F. This
follows immediately from the fact that {s ∈ S ∶ X(s) ≤ x} = {s ∈ S ∶ s ≤ F(x)}.
Prove this claim. (Hint: One direction of inclusion is straightforward; the other
becomes straightforward after an appeal to the right continuity of F.)

Appendix 6.B exercises

Exercise 6.B.1. Use the definition of the joint distribution function, F(x, y) =
P(X ≤ x,Y ≤ y), and the additivity axiom for disjoint events to show that

(6.B.2)
P(a1 < X ≤ b1, a2 < Y ≤ b2) = F(b1, b2) − F(b1, a2) − F(a1, b2) + F(a1, a2).

Exercise 6.B.2. A student goes through the following two-step procedure. First, he
spins a uniform(0, 2) spinner. Second, if he obtains outcome x from this first spin,
he then spins a uniform(0, x2) spinner. Let the random variables X and Y represent
the outcomes of the first and second spins, respectively.

a. What is the conditional density function of X given Y = y?
b. What is the conditional mean function E(X |Y = ⋅)?

Exercise 6.B.3. Let the pair of random variables (X,Y) have joint density function

f (x, y) =

{
6(x − y)2 if x, y ∈ [0, 1],
0 otherwise.

a. Confirm that f is a joint density function by verifying that equation
(6.B.4) holds, and use a computer or graphing calculator to sketch its
graph.

b. Compute the marginal density function of Y .
c. For each x ∈ [0, 1], compute the conditional density of Y given x.
d. Compute the conditional expectation function E(Y |X = x), and use a

computer or graphing calculator to sketch its graph.
e. As x increases, the areas under the vertical cross sections f (x, ⋅) go from

being concentrated on high values of y to being concentrated on low
values of y. Explain why this seems to contradict your answer to part (d).
Then explain why there is actually no contradiction. (Hint: Sketch the
graph of fX .)

Exercise 6.B.4. Suppose that X and Y are independent standard normal random
variables, and define the random variables U and V by U = aX + bY and V =
cX + dY .



Trim Size: 7.5in x 9.25in Sandholm bapp01.tex V1 - 10/05/2018 3:41pm Page 18�

� �

�

18 CHAPTER 6 Continuous Random Variables and Distributions

a. Use the trait formulas from Chapters 3 and 4 to compute E(U), E(V),
Var(U), Var(V), and Cov(U,V).

b. Show that |Corr(U,V)| = 1 if and only if ad = bc. (Hint: Use the
identity (ac + bd)2 + (ad − bc)2 = (a2 + b2)(c2 + d2).)

c. Suppose that ad ≠ bc. Using the transformation formula (6.B.11) and the
identity from part (b) to compute the joint density of (U,V), show that
this pair has a bivariate normal distribution with E(U) = E(V) = 0 and
with the variances and covariance you found in part (a).

Exercise 6.B.5. Show that if the joint density of X and Y can be written as f (x, y) =
g(x)h(y), then X and Y are independent, meaning that f (x, y) = fX(x) fY (y). (Hint:
Show that

(∫ ∞
−∞ g(x) dx

)(∫ ∞
−∞ h(y) dy

)
= 1.)

Exercise 6.B.6. Let X and Y be independent uniform(0, 1) random variables. Use
the convolution formula (6.B.13) to compute the density of X + Y .

Exercise 6.B.7. Let X and Y be independent uniform(0, 1) random variables.
Let (U,V) = 𝜙(X,Y), where 𝜙1(x, y) =

√
−2 ln x cos(2𝜋y) and 𝜙2(x, y) =√

−2 ln x sin(2𝜋y). Use the transformation formula (6.B.11) to show that U and V
are independent standard normal random variables. The function𝜙 is known as the
Box-Muller transform. (Hints: To invert 𝜙, use the identity cos2 𝜃 + sin2 𝜃 = 1.
To compute the partial derivatives of 𝜙−1, recall that d

dz
tan−1(z) = 1∕(1 + z2).)

Exercise 6.B.8. Continuing the second example from Section 6.B.5, suppose that
the random variable pair (X,Y) has joint density function

f (x, y) =

{
e−y if y ≥ x ≥ 0,

0 otherwise.

a. Let y > 0. What is the conditional distribution of X given Y = y?
b. What are the conditional expectation function and the conditional

variance function of X?

Exercise 6.B.9. Use the transformation formula (6.B.11) to derive the convolution
formula (6.B.13). (Hint: Use the transformation 𝜙(x, y) =

( x
x+y

)
.)

Exercise 6.B.10. Let X ∼ N(0, 𝜎2
X) and Y ∼ N(0, 𝜎2

Y ) be independent random vari-
ables. Use the convolution formula (6.B.13) to show that X + Y ∼ N(0, 𝜎2

X + 𝜎2
Y ).

(Hint: By completing the square, show that the function obtained from the convo-
lution formula reduces to the product of the N(0, 𝜎2

X + 𝜎2
Y ) density and an integral

that evaluates to 1.)
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Exercise 6.B.11. This exercise derives the properties of the bivariate normal dis-
tribution stated in Section 6.B.5. Let Z1 and Z2 be independent standard normal
random variables, and define X1 and X2 by

X1 = 𝜎1Z1 + 𝜇1 and

X2 = 𝜎2

(
𝜌Z1 +

√
1 − 𝜌2 Z2

)
+ 𝜇2,

where 𝜎1, 𝜎2 > 0 and 𝜌 ∈ (−1, 1).
a. Use the transformation formula (6.B.11) to show that the joint density

function of (X1,X2) is the bivariate normal density (6.B.9).
b. Show that Cov(X1,X2) = 𝜌𝜎1𝜎2, and hence that Corr(X1,X2) = 𝜌.
c. Use Exercise 6.B.10 to show that aX1 + bX2 ∼ N(a𝜇1 + b𝜇2, a

2𝜎2
1+

b2𝜎2
2 + 2ab𝜎1𝜎2𝜌). It follows immediately that X1 and X2 have marginal

distributions N(𝜇1, 𝜎
2
1 ) and N(𝜇2, 𝜎

2
2 ).

d. Show that the conditional distribution of X2 given that X1 = x1 is the
N(𝜇2 + 𝜌

𝜎2
𝜎1
(x − 𝜇1), 𝜎2

2 (1 − 𝜌2)) distribution.

Exercise 6.B.12. Suppose that the random variable X has a N(𝜇, 𝜎2), and that con-
ditional on X = x, the random variable Y has a normal distribution with mean ax
and variance 𝜏2, where a, 𝜏 > 0. Use the definition of conditional density to show
that (X,Y) has a bivariate normal distribution, and to determine E(Y), Var(Y), and
Cov(X,Y).

Exercise 6.B.13. As in Exercise 6.B.12, suppose that the random variable X has
a N(𝜇, 𝜎2), and that conditional on X = x, the random variable Y has a normal
distribution with mean ax and variance 𝜏2, where a, 𝜏 > 0. Compute E(Y), Var(Y),
and Cov(X,Y) using the law of iterated expectation (4.22), the decomposition of
variance formula (4.24), and the decomposition of covariance formula (4.25).


