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20Simple Regression: Statistical
Inference

Calculation workbook: regression_inference.xlsx
Data workbook: ch20_data.xlsx

You get who you pay for.

In 2012, more than 2.3 million Americans were employed as customer service
representatives, a figure that is expected to grow to 2.6 million by 2022.1 Given
this vast number of employees and the diversity of their employers, it is no
surprise that the caliber of customer service varies tremendously from company
to company. Among retailers, Costco is known for the quality of its customer
service; Kmart is not. Among airlines, Virgin America is recognized for its
strength in customer service; Spirit is not.2

A firm staffing its customer service department faces a tradeoff. By paying
higher wages, the firm can attract better qualified applicants and increase its
quality of service. But higher wages have a direct impact on profits. Likewise,
keeping wages low holds labor expenses down, but at the cost of having many
unhappy customers.

Suppose we wanted to understand the relationship between the wages of
customer service workers and customer satisfaction among technology firms in
Silicon Valley. If we observed the wages and customer satisfaction ratings of all
such firms, we could use the regression line to summarize the relationship
between these variables. But typically, we can only obtain observations about a
random sample of firms. How can we use the results of a sample to draw
inferences about the relation between wages and customer satisfaction in the
population as a whole?

The previous chapter introduced the regression line as a descriptive statistics
for bivariate data sets. We derived the regression line as the best linear predictor
of y values from x values, explained how the correlation coefficient quantifies how
well the regression line fits the data relative to the mean line, and compared the
regression line to various alternative “lines of best fit.”

1The data and projection are from the Bureau of Labor Statistics:
www.bls.gov/ooh/office-and-administrative-support/customer-service-representatives.htm.
22017 customer service rankings from temkingroup.com/temkin-ratings/.
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2 CHAPTER 20 Simple Regression: Statistical Inference

In this chapter, we consider regression in settings in which the data we ob-
serve comes from a random sample and is to be used for statistical inference. To
start, we introduce new probability models that describe the ex ante properties of
the sample in terms of unknown parameters: the intercept 𝛼 and slope 𝛽 of the
conditional mean line, and the conditional variance 𝜎2. As with the i.i.d. trials
model, the probability models in this chapter may describe the behavior of an in-
herently random process or random sampling from a population. The two models
we focus on—the classical regression model and the random sampling regression
model—differ in whether one or both of the variables under study are generated
by a random process, but the two models lead to inference procedures that are
virtually identical. The models impose considerable structure on the population or
random process under study, requiring linearity of conditional means and constant
conditional variances. After studying these basic models, we introduce normality
assumptions under which inferences may be drawn from small samples.

With the probability models in place, we introduce point estimators, interval
estimators, and hypothesis tests, and other inference procedures for the context
of regression. We also revisit analysis of residuals, and show how both sums of
squared residuals and the correlation coefficient can be used as the basis for hy-
pothesis tests about the slope parameter 𝛽. We conclude the chapter with a short
discussion of regression and causation, complementing those from Chapters 18
and 19.

20.1
The Classical and Random Sampling Regression
Models

We now present the two basic regression probability models: the classical regres-
sion model and the random sampling regression model. As in our previous prob-
ability models for statistical inference, these models specify the properties of the
sample in terms of certain unknown parameters. Here there are three: 𝛼, 𝛽, and 𝜎2.

The classical regression model.

(C1) Fixed x sampling: x1,… , xn are fixed and not all
identical;

Y1,… ,Yn are independent
random variables.

(C2) Linearity of conditional means: E(Yi) = 𝛼 + 𝛽xi.
(C3) Constant conditional variances: Var(Yi) = 𝜎2.

The random sampling regression model.
(R1) Random sampling: (X1,Y1),… , (Xn,Yn) are

independent as i varies;
SD(Xi) > 0.

(R2) Linearity of conditional means: E(Yi|Xi = x) = 𝛼 + 𝛽x.
(R3) Constant conditional variances: Var(Yi|Xi = x) = 𝜎2.
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20.1 The Classical and Random Sampling Regression Models 3

20.1.1 Fixed x sampling vs. random sampling

The important difference between the two models comes in their initial assump-
tions, which describe how the x and y values in the sample are obtained. The
classical regression model is based on assumption (C1), fixed x sampling. This
assumption says that the x values are set in advance to at least two distinct val-
ues. The y values corresponding to each x value are random, and in particular are
independent random variables.

The simplest interpretation of this assumption is in the context of an ex-
periment. Suppose that an agricultural researcher would like to understand the
relationship between fertilizer quantities and crop yields. According to assump-
tion (C1), the researcher is able to choose the amounts of fertilizer xi to use in
each trial, and then can observe the crop yields Yi that result. Since the researcher
chooses the amount of fertilizer xi, she views it as a fixed number. The crop yield
Yi is influenced by the choice of xi, but is inherently random, being affected by
various uncertain environmental conditions. To learn the relationship between fer-
tilizer levels and crop yields, the researcher will want to try a variety of xi values,
so the assumption that these are not all the same is innocuous. The assumption
that the Yi are independent means, for instance, that learning that crop yield Y1
was higher than its expected value provides no information about whether this is
true of crop yield Y2.

The random sampling regression model instead starts from assumption (R1),
random sampling, under which each pair (Xi,Yi) in the sample consists of two
random variables. This is the case if each of these pairs is a random draw from a
population described by a bivariate data set {(xj, yj)}N

j=1. The values of Xi and Yi
are both obtained from a random draw of a single individual from the population.
For instance, the data set might represent education and income levels of all adults
in the United States. By looking at the education and income levels of randomly
chosen U.S. adults, we can estimate how education and income are linked in the
U.S. population as a whole. The assumption that the standard deviation of the
x values is positive says that education levels in the U.S. population aren’t all
identical—again, an innocuous assumption.

It is usual to think of the classical regression model as describing an exper-
iment, and the random regression model as describing sampling from a bivariate
population, and our examples of these models will follow this pattern. However,
these are not the only possibilities; in fact, all four combinations of model and
application are possible.

For instance, suppose that a paper manufacturer experimenting with a new
production process gets to observe two properties—the tensile strength and
whiteness—of the paper the process produces. In this case, the experimenter
does not choose anything, and his observations are randomly determined x and y
values. This experiment is described by assumption (R1) of the random regression
model.

Likewise, the classical regression model can be used to describe a structured
approach to sampling from a population called stratified sampling. Instead
of picking individuals at random from the population, the researcher instead
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4 CHAPTER 20 Simple Regression: Statistical Inference

prespecifies the x values to be used in his sample. As in Section 19.3, we can think
of each of these x values as defining a subpopulation of size Nx of the full pop-
ulation of size N. By fixing the x values, the researcher is specifying in advance
which subpopulations he will sample from. In the education/income example,
the researcher might prespecify that the first member of his sample be someone
whose education ended immediately after high school. Then the corresponding
y observation would be obtained by choosing an adult at random from the sub-
population with x = 12 years of schooling. Since it fixes the x values in advance,
stratified sampling agrees with assumption (C1) of the classical regression model.

Because the classical regression model has fewer moving parts, it is easier to
analyze, and we will initially derive our procedures for statistical inference under
its assumptions. Happily, the same procedures work equally well in the context of
the random sampling model, for reasons we explain in Appendix 20.A.1. Because
our procedures work equally well in both cases, we use examples based on both
the classical and random sampling models without further ado.

20.1.2 Linearity of conditional means

The remaining assumptions of both probability models are about the conditional
distributions of the y variables. Assumptions (C2) and (R2), called linearity of
conditional means, say that the expected y values can be described by a linear
function of the corresponding x values, specifically, the function f (x) = 𝛼 + 𝛽x.
Like the parameter 𝜇 from the i.i.d. trials model, the parameters 𝛼 and 𝛽 appear-
ing here are numbers that the experimenter does not know in advance. The point
of obtaining the sample is to estimate and draw inferences about these unknown
parameters.

Let’s first interpret assumption (C2) of the classical regression model, in
which the x values are fixed by the experimenter. This assumption says that if
the experimenter sets the x value of the ith trial at xi, then the expected value
of the y variable is E(Yi) = 𝛼 + 𝛽xi. In our earlier example, this means that within
the relevant range of fertilizer levels, the expected crop yield is a linear function
of the amount of fertilizer applied, with slope equal to 𝛽 and intercept equal to
𝛼. It follows that increasing the amount of fertilizer applied by one unit always
increases the expected yield by the same amount, namely, 𝛽 units.

Under the random sampling model, the pair (Xi,Yi) is determined by a single
random draw from the population, so the value of Xi is not known until we take
the sample. The equation E(Yi|Xi = x) = 𝛼 + 𝛽x in assumption (R2) says that if
we happen to sample an individual from subpopulation x, then this individual’s
expected y value is 𝛼 + 𝛽x.

Ultimately, assumption (R2) is a statement about the population {(xj, yj)}N
j=1

from which the random sample is drawn. By conditioning on the event that
Xi = x, we specify that Yi is the y value of some member of subpopulation x.
In Section 19.3, we called the average of such y values the conditional mean (or
subpopulation mean) for subpopulation x. It is denoted 𝜇y|x, and defined by

𝜇y|x = 1
Nx

∑
j∶ xj=x

yj.
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20.1 The Classical and Random Sampling Regression Models 5

In words, we find the Nx data pairs (xj, yj) from subpopulation x (i.e., for which
xj = x), sum up the corresponding y values, and divide by the number of data pairs
in the subpopulation.

In Section 13.4, we argued that the traits of a random draw from a population
are equal to the corresponding traits of the population from which the sample is
drawn. Here, this connection implies that E(Yi|Xi = x), the expected y value of a
random draw from subpopulation x, is equal to the descriptive statistic 𝜇y|x. We can
therefore rewrite assumption (R2) as

𝜇y|x = 𝛼 + 𝛽x.

Thus in the random sampling regression model, the subpopulation means are as-
sumed to be a linear function of x; the slope of the line is 𝛽 and the intercept
is 𝛼.

In Chapter 19, we used the notation f (x) = 𝛼 + 𝛽x for something else. There it
denoted the population regression line, the line that minimizes the sum of squared
residuals

(20.1)
N∑

j=1

(
yj − (a + bxj)

)2
over all choices of the intercept a and slope b. While it may seem that this dis-
agrees with our notation here, it actually does not. We explained in Section 19.3.2
that when the conditional mean function is linear, as (C2) and (R2) posit, then it
is the regression line.3 So we began with the strong assumption that f (x) = 𝛼 + 𝛽x
is the conditional mean function, and this assumption implies that f (x) = 𝛼 + 𝛽x
is also the regression line, as the notation suggested in the first place. This agree-
ment helps explain why we call the probability models above “regression models.”
It also justifies using regressions on the sample data to estimate the unknown pa-
rameters 𝛼 and 𝛽, as we explain in Section 20.2.

20.1.3 Constant conditional variances

The remaining assumptions, (C3) and (R3), are called constant conditional vari-
ances. These assumptions say that the dispersion of the y values does not depend
on the corresponding x value.4 In the classical model, the experimenter chooses
each value of xi. While assumption (C2) says that the expected value of the obser-
vation Yi is a linear function of this choice, assumption (C3) says that the disper-
sion of Yi around its mean is equal to 𝜎2 regardless of this choice. In the agriculture
example, the assumption says that within the relevant range of fertilizer levels,
the amount of dispersion in crop yields is the same regardless of the fertilizer
level chosen.

3If you don’t remember why this is true, you should review Section 19.3.2 now. The explanation there
is in the context of bivariate population data, but the claim also holds in the context of an experiment.
4Assumptions (C3) and (R3) also go by the name homoskedasticity. Econometricians enjoy not only
Greek letters, but also Greek words!
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6 CHAPTER 20 Simple Regression: Statistical Inference

For the random sampling model, assumption (R3) conditions on the event
that the individual sampled is from subpopulation x. It requires that regardless
of the subpopulation in question, the conditional variance in the y observation,
Var(Yi|Xi = x), be equal to 𝜎2.

This statement too is ultimately about the bivariate data set {(xj, yj)}N
j=1 de-

scribing the population from which the sample is drawn. In Section 19.3, we
defined the conditional variance (or subpopulation variance) for subpopulation x
by

𝜎2
y|x = 1

Nx

∑
j∶ xj=x

(
yj − 𝜇y|x)2 .

Thus 𝜎2
y|x is the average of the squared deviations (yj − 𝜇y|x)2 of the y values from

the subpopulation x’s mean.
Since the traits of a sample are the traits of the population from which the

sample is drawn, the conditional variance Var(Yi|Xi = x) from condition (R3) is
equal to 𝜎2

y|x. Assumption (R3) says that all of these conditional variances have the
same value, a requirement we can express equivalently as

𝜎2
y|x = 𝜎2.

Like 𝛼 and 𝛽, the parameter 𝜎2 generally isn’t known in advance, but must
be estimated using the results of the sample. Also, it is worth emphasizing that
the common conditional variance 𝜎2

y|x = 𝜎2 is not equal to 𝜎2
y , the variance of the

y data. The total variance in the y data must account not only for the variance
within each subpopulation, but also for the fact that the subpopulation means vary
around the overall mean 𝜇y. Thus 𝜎2

y ≥ 𝜎2, with equality holding only if all of the
conditional means are the same.5

20.1.4 How reasonable are the assumptions?

The assumptions of linear conditional means and constant conditional variances
are rather strong, so we should not expect them to hold in every application. For
the latter of these, let us return to the education (x) and income (y) example. In this
context, assumption (R3) states that whether we consider the subpopulations with
8 years, 12 years, or 16 years of education, the dispersions of the income levels
within the subpopulations are the same. There is reason to think that this will not be
true. Instead, we might expect that subpopulations with higher levels of education
will also exhibit more dispersion in their income levels: while limited education
usually constrains one to a low-wage job, an advanced education gives one more
flexibility in choosing a career, introducing a wider range of incomes. If the in-
come dispersion varies across education levels, assumption (R3) is violated.6

5The exact relation between conditional and total variance is given by the decomposition of variance
formula—see Exercise 4.M.3.
6The fancy name for this variation in subpopulation variances is heteroskedasticity.
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20.1 The Classical and Random Sampling Regression Models 7

Similarly, the assumption of linearity of conditional means may be a reason-
able approximation in some applications, but not in others. For instance, suppose
we studied the relationship between the number of cars using a certain segment
of an interstate highway, and the speed at which these cars traveled. In this case,
we expect that as long as the number of cars is relatively small, average speed will
be close to the speed limit, but that as the road becomes congested, the average
speed will drop sharply. In this case, the effect of a change in the number of cars
on average speed will differ depending on whether the current number of cars on
the road is small or large. This means that assumption (R2) is violated.

■ Example The assumptions of the regression models in pictures.

What does population data that satisfies the assumptions of the regression models
look like? Suppose we collect a complete set of students’ scores on a standardized
math test in a small school district. Students from grades 3 through 12 take the test,
and enrollments in each grade range from 20 to 36. The computerized adaptive
test, which is scored on a 600-point scale, adjusts the difficulty in the questions
according to the student’s performance on previous questions, making it suitable
for all grade levels.

Figures 20.1–20.3 present three possible scatterplots of grade levels (x)
and test scores (y) for the school district. In each figure, the data points are
slightly opaque, so that locations with many overlapping data points are darker

Figure 20.1: Population data that satisfies both conditional distribution assumptions.
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8 CHAPTER 20 Simple Regression: Statistical Inference

Figure 20.2: Population data that fails linearity of conditional means (R2).
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Figure 20.3: Population data that fails constant conditional variances (R3).
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20.2 The OLS Estimators 9

than isolated data points. Which of the scatterplots satisfy the assumptions on
conditional distributions from our regression models? For any that do not, which
assumptions are violated?

Figure 20.1 presents population data that satisfy both of the regression mod-
els’ assumptions on conditional distributions. For each grade level, the mean test
score lies on the linear conditional mean function 𝜇y|x = 40 + 30x, which is drawn
in the figure. Moreover, the subpopulation variances of scores are the same for each
grade level, namely, 𝜎2

y|x = 502 = 2500.
In Figure 20.2, the subpopulation means do not change at a constant rate:

the rate increase is faster at higher grade levels than at lower ones. Thus linearity
of conditional means (R2) fails to hold for the data presented here. In fact, the
conditional means are described by the function 𝜇y|x = 100 + .2083 x3, which is
drawn in the figure. The data in the figure do satisfy constant conditional variances
(R3), again with 𝜎2

y|x = 502 = 2500.

In Figure 20.3, the subpopulation means again vary linearly according to the
function 𝜇y|x = 40 + 30x. But in this figure, test scores become more dispersed as
the grade level increases. Indeed, the subpopulation variances for this data set are
described by the function 𝜎2

y|x = (15 + 5x)2. Thus constant conditional variances
(R3) is violated. ■

In practice, how well the assumptions of the regression models are satisfied
is a matter of degree: sometimes they are reasonably good approximations, and
sometimes not. When they are not, one can turn to regression probability models
that use weaker assumptions. In Appendix 20.A.2, we present a regression model
that makes no assumptions at all about the conditional distributions of the y vari-
ables. We argue that versions of the main inference procedures described in the
main text can still be used, although with differences in both their details and their
interpretations.

To close this discussion, we should note one violation of the basic assump-
tions that is not so easily resolved. Suppose that our observations are time series,
describing the evolution of certain quantities over time. For instance, macroe-
conomic analyses of gross national products, inflation rates, unemployment
rates, and exchange rates make use of time series data. Time series observations
generally do not satisfy the independence condition from assumptions (C1) and
(R1), but instead exhibit serial correlation. For example, if Yi represents the
inflation rate in year i, it seems natural to expect correlation over time, with
abnormally high inflation in year i often being followed by abnormally high
inflation in year i + 1. Econometric analysis of time series data uses methods
that are quite different from those that we present here and are covered in more
advanced books on econometrics.

20.2 The OLS Estimators

Our two regression models are defined in terms of three unknown parameters: 𝛼
and 𝛽, which describe the conditional expectation function, and the conditional
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variance 𝜎2. In this section and the next, we consider how to estimate these
parameters using the results of a sample. We begin by considering point
estimation of 𝛼 and 𝛽.

20.2.1 Defining the OLS estimators

According to the assumptions of our regression models, the function f (x) = 𝛼 + 𝛽x
describes the conditional means of y values given x values. But as we explained
in Section 20.1.2, this implies that f (x) = 𝛼 + 𝛽x is also the population regression
line. The latter fact suggests an approach to estimating 𝛼 and 𝛽.

In earlier chapters, we used the sample mean X̄n to estimate the population
mean 𝜇x. Here, we will use the sample analogues of 𝛼 and 𝛽—that is, the intercept
and slope of the sample regression line—as our estimators for 𝛼 and 𝛽, the intercept
and slope of the population regression line.7 In other words, to estimate the line
that minimizes the sum of squared residuals in the population, we use the line that
minimizes the sum of squared residuals in the sample.

In Chapter 19, we expressed the parameters 𝛼 and 𝛽 defining the population
regression line in terms of other descriptive statistics for the population:

𝛽 =
𝜎xy

𝜎2
x

and 𝛼 = 𝜇y − 𝛽𝜇x.

We define the sample regression line using the sample analogues of these
equations.

We focus on the simpler case of the classical regression model, in which the
x values are picked by the researcher.8 To avoid conflict with our notation for
population descriptive statistics, we introduce the notations

x̄ = 1
n

n∑
i=1

xi and s 2
x = 1

n − 1

n∑
i=1

(xi − x̄)2

for the mean and variance of the x values the researcher has chosen. As usual,
we let

Ȳ = 1
n

n∑
i=1

Yi

denote the sample mean of the y variables, and we let

SxY = 1
n − 1

n∑
i=1

(xi − x̄)(Yi − Ȳ)

7This approach to coming up with estimators is sometimes called the sample-analogue principle.
8For the random sampling regression model, see Appendix 20.A.1.
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denote the covariance between the x values and y variables in the sample. We use
capital S here to emphasize that SxY is a random variable: it depends on the values
of the random variables Yi.

9

With these preliminaries addressed, we can define our estimators for the clas-
sical regression model, which are known as the ordinary least squares estima-
tors, or OLS estimators for short. The name refers to the fact that these estimators
minimize the sum of squared residuals in the sample data.10

Definition.
In the classical regression model, the OLS estimators for 𝛼 and 𝛽 are

(20.2) B =
SxY

s 2
x

=
∑n

i=1(xi − x̄)(Yi − Ȳ)∑n
i=1(xi − x̄)2

and A = Ȳ − Bx̄.

■ Example Demand more beer.

A microbrewer has decided to expand its distribution network to take advantage of
the growing popularity of its flagship beer, Trial by Hops. Before setting the price
for Trial by Hops in the new territory, the CEO asks the marketing director to es-
timate the expected-demand curve for their product. To do so, the director runs an
experiment, varying the wholesale keg price of Trial by Hops at 33 of their existing
distributors, all of which cover territories of comparable size and demographics,
and observing the number of kegs each distributor sells during the next week. The
data can be found in the workbook ch20_data.xlsx/trial_by_hops.

The firm believes that demand for Trial by Hops satisfies the assumptions of
the classical regression model. Thus, for each fixed dollar price x, the expected
number of kegs sold is 𝛼 + 𝛽x, and the variance in the number of kegs sold is 𝜎2,
where the parameters 𝛼, 𝛽, and 𝜎2 are unknown.11

After the running the experiment, the microbrewer compiles the following
basic statistics summarizing its results:

x̄ = 80.727, s 2
x = 41.205, Ȳ = 28.394, and SxY = −33.295.

9 Defining s 2
x and SxY by dividing by n − 1 makes these definitions agree with those for the random

sampling regression model (see Appendix 20.A.1). We could instead have divided by n, so as to
match the descriptive statistic formulas from Chapter 19. This wouldn’t affect the formulas for the
OLS estimators, since the divisors cancel in the first formula for B in equation (20.2).
10The traditional notations for the OLS estimators are 𝛽 and 𝛼̂ (pronounced “beta hat” and “alpha
hat”). We instead use capital letters for these estimators to emphasize that they are random variables,
and so have distributions, expected values, variances, and the like.
11In this experiment, the x variable is the price, and the y variable is the quantity demanded. If you’ve
taken any microeconomics, you may have noticed that this choice of variables is not the one typically
used in graphs of demand curves, which put quantity on the horizontal axis and price on the vertical
axis. But you may also remember that such graphs are called “inverse demand curves.” This is
because the price is chosen first and then the demand at that price is realized, not the other way
around.
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The OLS estimates for 𝛽 and 𝛼 are therefore

B =
SxY

s 2
x

= −.8080 and A = Ȳ − B𝜇x = 93.63.

The equation for the sample regression line, which here is the estimate of the
expected-demand curve, is y = 93.63 − .8080x. Based on the results of this ex-
periment, the microbrewer estimates that increasing the price it charges by one
dollar reduces the expected number of kegs sold by about .8. ■

Excel calculation: Computing OLS estimates in Excel
Computing the sample regression line directly from raw data involves a lot of
calculation, which is best done using a computer. The workbook regres-
sion_inference.xlsx provides a template for doing these calculations.
Figure 20.4 presents the workbook’s output for the Trial by Hops data.

Figure 20.4: regression_inference.xlsx

X Y A + Bx Y – (A + Bx) 33
72 32 35.44604 –3.45 80.72727273
78 31 30.59772 0.40 28.39393939
85 19 24.94135 –5.94 6.419076682
76 35 32.21383 2.79 41.20454545
89 18 21.70914 –3.71 7.495579505
75 37 33.02188 3.98 56.18371212
88 17 22.51719 –5.52 –33.29545455
89 32 21.70914 10.29 –0.692001713
83 31 26.55746 4.44 0.47886637
90 24 20.90108 3.10
78 35 30.59772 4.40
81 26 28.17356 –2.17
81 30 28.17356 1.83 93.62585034
76 27 32.21383 –5.21 –0.808052951
78 28 30.59772 –2.60
90 19 20.90108 –1.90
84 35 25.7494 9.25 30.22371285
79 23 29.78967 –6.79
71 43 36.25409 6.75
70 36 37.06214 –1.06 0.151400167
80 22 28.98161 –6.98
84 27 25.7494 1.25
72 41 35.44604 5.55 86
71 45 36.25409 8.75 24.13329656
72 31 35.44604 –4.45 1.246250323
78 29 30.59772 –1.60
88 22 22.51719 –0.52
78 24 30.59772 –6.60 28.48570239
89 18 21.70914 –3.71
88 22 22.51719 –0.52
81 18 28.17356 –10.17 1797.878788
80 29 28.98161 0.02 860.9436895
90 31 20.90108 10.10 936.9350984
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To use the workbook, enter up to 1000 pairs of sample data points in the
first pair of columns. The top part of the third pair of columns reports various
basic statistics describing the sample data. Immediately below these are the OLS
estimators—the intercept A and slope B of the sample regression line. The diagram
on the right plots this line on top of a scatterplot of the sample data.



Trim Size: 7.5in x 9.25in Sandholm ch20.tex V1 - 10/05/2018 3:40pm Page 13�

� �

�
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The workbook computes a number of additional quantities that are used
to draw inferences about the unknown parameters 𝛼, 𝛽, and 𝜎2, and that we
discuss below.

20.2.2 Basic properties of the OLS estimators

The OLS estimators A and B, which describe the sample regression line, seem
like natural candidates to estimate the parameters 𝛼 and 𝛽, which define the true
regression line. But of course, a more convincing justification for these estima-
tors requires our usual criteria of unbiasedness, consistency, and efficiency from
Chapter 14.

In order to evaluate these criteria, we need to be able to determine the
traits—the means, variances, and covariance—of the OLS estimators. To do so,
we first express these estimators in a very convenient form.

Linearity of the OLS estimators.
Under the classical regression model, the OLS estimators are linear functions

of the random variables {Yi}n
i=1: they can be written as

(20.3) B =
n∑

i=1

(
xi − x̄

(n − 1)s 2
x

)
Yi and A =

n∑
i=1

(
1
n
−

x̄ (xi − x̄)
(n − 1)s 2

x

)
Yi.

Exercise 20.M.1 works through the derivations of these formulas from the defini-
tions in (20.2) above.

Knowing that the OLS estimators are linear functions of the random vari-
ables Yi is very useful. For one thing, it allows us to compute their traits using the
formulas for linear functions of random variables from Chapters 3 and 4.

Traits of the OLS estimators.
Under the classical regression model, the OLS estimators are unbiased:

(20.4) E(B) = 𝛽 and E(A) = 𝛼.

The variances and covariance of the OLS estimators are

Var(B) = 𝜎2

(n − 1)s 2
x

, Var(A) = 𝜎2

(
1
n
+ x̄2

(n − 1)s 2
x

)
,

and Cov(A,B) = − 𝜎2x̄

(n − 1)s 2
x

.(20.5)

The calculations of the mean and variance of B are presented in Appendix 20.A.3,
and the remaining calculations are described in Exercises 20.M.2 and 20.M.3.
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Display (20.4) says that A and B are unbiased estimators of 𝛼 and 𝛽: the
estimators are correct on average, where the average is taken ex ante over all
possible results of the sample.

Display (20.5) reports the variances and covariance of A and B. These
measures of the estimators’ dispersion and comovements are needed to construct
interval estimators and hypothesis tests. Notice that increasing the conditional
variance 𝜎2 increases Var(A) and Var(B). This makes sense: spreading out the y
values in each subpopulation makes it harder to obtain an accurate estimate of the
true regression line. On the other hand, increasing the variance s 2

x of the x values
reduces the dispersion of the estimators. Intuitively, the sample regression line is
more likely to be close to the true regression line if it is based on a wide range of
x values than if all of the x values are packed together.

Another desirable property for estimators introduced in Chapter 14 is consis-
tency, the requirement that as the size of the sample grows large, the probability
that the estimator takes a value close to the parameter it estimates approaches 1.
Is this true of the OLS estimators? Since the OLS estimators are unbiased, it is
enough to show that their variances, Var(B) and Var(A), approach zero as the sam-
ple size grows large.12 Looking at the formulas for Var(B) and Var(A) above, we
see that this depends on the values of the xi, which in the classical regression model
are chosen by the experimenter. As long as the experimenter includes some varia-
tion in the x values—in particular, as long as s 2

x is kept some fixed distance away
from 0—then Var(B) and Var(A) will go to zero, implying consistency.

Consistency of the OLS estimators.
Under the classical regression model, so long as there is nonnegligible vari-

ation in the x values, the OLS estimators B and A are consistent.

20.2.3 Estimating conditional means

In some applications, we are particularly interested in estimating the mean y value
corresponding to a particular x value. For instance, our brewer might want to esti-
mate the expected number of kegs sold at a particular price point.

According to the classical regression model, the mean y value in subpop-
ulation x is 𝛼 + 𝛽x. Since we use the OLS estimators A and B to estimate the
parameters 𝛼 and 𝛽, the natural point predictor of the conditional mean is A + Bx.
It is easy to check that this estimator is unbiased:

E(A + Bx) = E(A) + E(B)x = 𝛼 + 𝛽x.

A somewhat longer calculation determines its variance:

Var(A + Bx) = Var(A) + Var(Bx) + 2Cov(A,Bx)

12This follows directly from Chebyshev’s inequality, which we introduced in Chapter 7 to prove the
law of large numbers.
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= Var(A) + x2Var(B) + 2xCov(A,B)

= 𝜎2

(
1
n
+ x̄2

(n − 1)s 2
x

)
+ x2 𝜎2

(n − 1)s 2
x

− 2x
𝜎2x̄

(n − 1)s 2
x

= 𝜎2

(
1
n
+ x̄2 + x2 − 2xx̄

(n − 1)s 2
x

)
= 𝜎2

(
1
n
+ (x − x̄)2

(n − 1)s 2
x

)
.(20.6)

Finally, since A and B are consistent estimators of 𝛼 and 𝛽, A + Bx is a consistent
estimator of A + Bx. Let’s summarize these conclusions.

Estimating conditional means.
Under the classical regression model, A + Bx is an unbiased estimator of

𝛼 + 𝛽x, with variance given by (20.6). If there is non-negligible variation in the x
values, A + Bx is also a consistent estimator of 𝛼 + 𝛽x.

Looking more closely at expression (20.6), we see that increasing the distance
between x and x̄ makes Var(A + Bx) larger. In other words, we have better infor-
mation about y values corresponding to x values that are “in the middle” than to
ones that are extreme. Why is this so? Using the definitions of 𝛼 and A, we can
express the conditional mean and its estimator in terms of x − x̄:

𝛼 + 𝛽x = (𝜇y − 𝛽x̄) + 𝛽x = 𝜇y + 𝛽(x − x̄);

A + Bx = (Ȳ − Bx̄) + Bx = Ȳ + B(x − x̄).

Comparing the final expressions, we see that when x is close to x̄, so that x − x̄
is close to zero, errors in estimating 𝛽 will have little effect on our estimates of
𝛼 + 𝛽x. But when x is far from x̄, so that x − x̄ is not close to zero, the impact of
these errors will be large as well.

20.2.4 Approximate normality of the OLS estimators

In order to construct interval estimators and hypothesis tests using the OLS
estimators, we need information about their distributions. In the case of the
sample mean X̄n = 1

n

∑n
i=1 Xi of independent and identically distributed random

variables, we used the central limit theorem to conclude that the X̄n is approxi-
mately normally distributed. We can reach the same conclusion about the OLS
estimators, but for somewhat more complicated reasons.

Approximate normality of the OLS estimators.
In the classical regression model, if n is not small and there is non-negligible

variation in the x values, then the OLS estimators A and B are approximately
normally distributed. Under the same conditions, for any choice of x, A + Bx is
approximately normally distributed.
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16 CHAPTER 20 Simple Regression: Statistical Inference

To see why this statement is true, let’s focus on the slope estimator B. We know
from equation (20.3) that we can write B as a weighted sum of the Yi. The latter
random variables are independent, but they are not identically distributed—since
E(Yi) = 𝛼 + 𝛽xi, the means of the Yi differ, and their distributions may also differ in
other respects. For these reasons, the central limit theorem introduced in Chapter 7
cannot be applied to B.

Happily, it turns out that the conclusions of the central limit theorem do not
require all of the structure we imposed in Chapter 7. If we have a collection of
independent random variables, and we take a weighted sum that does not put too
much weight on any one term, there is a generalization of the central limit theorem
that allows us to conclude that this weighted sum has an approximately normal dis-
tribution.13 This is precisely the result we need to conclude that the OLS estimators
are approximately normally distributed.

20.2.5 Efficiency of the OLS estimators: The Gauss-Markov
theorem*

When we introduced point estimation in Chapter 14, we proposed the notion of ef-
ficiency as one of our criteria for evaluating the quality of estimators. By choosing
efficient estimators—that is, by choosing estimators whose variance is as small as
possible—we ensure that we extract the maximum amount of information from
the sample.

In the context of regression inference, we have the following basic efficiency
result.14

The Gauss-Markov theorem.
Of all unbiased linear estimators of 𝛼 and 𝛽, the OLS estimators A and B

have the smallest variance. Likewise, for any choice of x, of all unbiased linear
estimators of 𝛼 + 𝛽x, the estimator A + Bx has the smallest variance.

We present a proof of this result in Appendix 20.A.4.
The first part of the Gauss-Markov theorem considers the class of unbiased

linear estimators of the regression parameters 𝛼 and 𝛽. As we argued in Chapter 14,
it makes sense to restrict attention to unbiased estimators because they are correct
“on average” from the ex ante point of view—that is, from the perspective of the
time before the sample is taken. The restriction to linear estimators—those that can
be expressed as a linear function of the random variables Yi—can be defended on
the grounds of simplicity and convenience. The theorem tells us that among all es-
timators satisfying these conditions, the OLS estimators have the lowest variance.

13This general version of the central limit theorem is known as the Lindeberg-Feller central limit
theorem.
14We encountered Carl Friedrich Gauss, the originator of the regression line, in Section 19.1. Russian
mathematician Andrey Andreyevich Markov (1856–1922) made basic contributions to probability
theory, with fundamental work on a class of random processes, now called Markov processes, that are
used in an endless variety of applications.



Trim Size: 7.5in x 9.25in Sandholm ch20.tex V1 - 10/05/2018 3:40pm Page 17�

� �

�

20.3 The Sample Conditional Variance 17

Thus within this class, one cannot make better use of the information provided by
the sample in estimating the regression parameters.

The second part of the Gauss-Markov theorem extends this conclusion to es-
timators of subpopulation means 𝛼 + 𝛽x. Among all unbiased linear estimators of
𝛼 + 𝛽x, the OLS estimator A + Bx has the lowest variance.

This latter result can help us appreciate the strength of the assumptions of the
classical regression model. You might expect that to estimate the subpopulation
mean 𝜇y|x, the best choice of estimator would be the sample subpopulation mean

(20.7) Ȳ|x = 1
nx

∑
i∶ xi=x

Yi;

here nx is the number of times x appears in the list {xi}n
i=1 of values used in the

sample. Ȳ|x is a linear and unbiased estimator of 𝜇y|x, and it seems particularly
appealing when nx is large. But the Gauss-Markov theorem tells us that the esti-
mator A + Bx is preferable to Ȳ|x; the former is also linear and unbiased, but it has
a lower variance than Ȳ|x.

This fact is a consequence of the structure imposed by the classical regression
model. Clearly, observation Yi from subpopulation x provides information about
the subpopulation mean 𝜇y|x = E(Yi). But since all y observations, whether from
subpopulation x or not, are used to compute the OLS estimators A and B, all of
these observations provide information about the parameters 𝛼 and 𝛽. And since
𝜇y|x = 𝛼 + 𝛽x (by assumption (C2)), it follows that every y observation is also
informative about this conditional mean. Indeed, as the estimators A and B use the
information from all y observations to estimate 𝛼 and 𝛽 as efficiently as possible,
it makes sense that A + Bx is the most efficient estimator of 𝜇y|x = 𝛼 + 𝛽x.

20.3 The Sample Conditional Variance

The conditional variance 𝜎2 describes the dispersion of the y values within each
subpopulation. The smaller is this conditional variance, the less likely it is that our
sample observations will be far from the population regression line y = 𝛼 + 𝛽x,
and so the better the estimate the sample regression line y = A + Bx is likely to
provide.

To create interval estimators and hypothesis tests for the parameters 𝛼 and 𝛽

and the conditional means 𝛼 + 𝛽x, we need estimators of the variances Var(A) and
Var(B) and the covariance Cov(A,B) of the OLS estimators A and B. The formulas
for Var(A), Var(B), and Cov(A,B) were presented in display (20.5). The terms in
these formulas involving the x values and the sample size n are known in advance;
but the conditional variance 𝜎2 is unknown. Thus by constructing an estimator of
𝜎2, we also obtain the sought-after estimators of Var(A), Var(B), and Cov(A,B),
allowing us to draw inferences about 𝛼, 𝛽, and 𝛼 + 𝛽x.

By definition, the conditional variance 𝜎2 is the variance of each observation
Yi. In other words, 𝜎2 is the expected value of the squared deviation of each Yi from
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its mean E(Yi) = 𝛼 + 𝛽xi. If we knew the conditional means E(Yi) = 𝛼 + 𝛽xi, then
the natural way to estimate 𝜎2 would be to take the average of the squared devia-
tions (Yi − (𝛼 + 𝛽xi))2. But since we don’t know the parameters 𝛼 or 𝛽, we don’t
know the conditional means either.

We faced a similar problem in Section 14.4 when seeking an estimator of the
variance 𝜎2

X = E(Xi − 𝜇X)2 of i.i.d. trials {Xi}n
i=1. If we knew the mean 𝜇X of the

trials, we could have estimated 𝜎2
X using the average of the squared deviations

(Xi − 𝜇X)2. But not knowing 𝜇X , we replaced it with the sample mean X̄n, and
defined the sample variance S 2

X = 1
n−1

∑n
i=1(Xi − X̄n)2. In computing the “average”

that defines the sample variance, we divided by n − 1 rather than n in order to an
obtain an unbiased estimator of 𝜎2

X .
The solution to our current problem follows these same lines. Since the con-

ditional means E(Yi) = 𝛼 + 𝛽xi are unknown, we replace them with the estimators
A + Bxi. Taking the “average” of the squared deviations then leads to the sample
conditional variance,

(20.8) S 2 = 1
n − 2

n∑
i=1

(Yi − (A + Bxi))2.

This time, the “average” divides by n − 2 rather than n.
We can express S 2 more succinctly by introducing sample versions of some

definitions from the previous chapter. Let

(20.9) Ŷi = A + Bxi and Ui = Yi − Ŷi

denote the ith sample regression prediction and the ith sample regression resid-
ual. Then the sample conditional variance is the “average” squared regression
residual:

S 2 = 1
n − 2

n∑
i=1

U2
i .

Here are the key properties of S 2.

Unbiasedness and consistency of the sample conditional variance.
In the classical regression model, the sample conditional variance S 2 is an un-

biased estimator of the conditional variance 𝜎2. If there is non-negligible variation
in the x values, this estimator is also consistent.

We verify that S 2 is unbiased, that is, that E(S 2) = 𝜎2, in Appendix 20.A.5.
In defining the sample conditional variance, we divide by n − 2 rather than n

in order to obtain an unbiased estimator of 𝜎2: dividing by n would yield an estima-
tor that is biased low. The intuition here is similar to the one for dividing by n − 1
in defining the sample variance (Section 14.4.2). By definition, the sample regres-
sion line minimizes the sum of squared sample residuals Yi − (A + Bxi) for every
realization of the sample.15 These sample residuals thus tend to be smaller than

15Compare the discussion of the i.i.d. trials model in Section 14.4.2.
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residuals Yi − (𝛼 + 𝛽xi) defined using the true regression line. By using a smaller
divisor in (20.8)—by dividing by n − 2 rather than n—we compensate for this bias.

As in Section 14.4.2, we can remember to divide by n − 2 using the rule of
thumb called degrees of freedom. To estimate 𝜎2, we first need to estimate 𝛼

and 𝛽. There is a sense in which estimating these two parameters uses up the in-
formation from two of our n trials, leaving only n − 2 pieces of information—or
“degrees of freedom”—for estimating 𝜎2. The rule of thumb says that dividing
by the number of degrees of freedom rather than the number of trials leads to an
unbiased estimator. Of course this does not prove that the rule of thumb is correct,
but it gives us a guess that can be verified by calculation.

Excel calculation: The sample conditional variance
The regression_inference.xlsx workbook, introduced earlier to com-
pute the OLS estimates, also computes the sample conditional variance. Figure
20.4 shows that the sample conditional variance for the Trial by Hops data is
S 2 = 30.2237. This is the brewer’s estimate of the conditional variance 𝜎2, which
here represents the dispersion in the number of kegs that would be sold at any fixed
price x.

20.4 Interval Estimators and Hypothesis Tests

At this point, we have defined the OLS estimators A and B and have argued that
they are unbiased and that they are approximately normally distributed if the sam-
ple size is not too small. We’ve also specified their variances and covariance in
terms of the conditional variance 𝜎2, and have introduced the sample conditional
variance S 2 as an unbiased and consistent estimator of 𝜎2. With these tools in
hand, we are in a position to construct interval estimators and hypothesis tests for
the slope parameter 𝛽 and the conditional means 𝛼 + 𝛽x. Choosing x = 0 in the
latter case gives us inference procedures for 𝛼.

The procedures we introduce here work in essentially the same way as our pro-
cedures for inference about the unknown mean of i.i.d. trials, and for essentially
the same reasons. We therefore start by reviewing the procedures for inference
about an unknown mean, introducing new notation to make the transition to re-
gression inference easier.

20.4.1 Review: Inference about an unknown mean

Suppose we want to estimate the unknown mean E(Xi) = 𝜇X of a sequence {Xi}n
i=1

of i.i.d. trials with variance Var(Xi) = 𝜎2
X . Our point estimator for 𝜇X is the sample

mean X̄n = 1
n

∑n
i=1 Xi. This estimator is unbiased with variance Var(X̄n) =

𝜎2
X

n
, and
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the central limit theorem implies that it is approximately normally distributed.

To sum up, X̄n ≈ N(𝜇X ,
𝜎2

X

n
).

Using this knowledge about the distribution of X̄n, we can show that

(20.10) P
(
𝜇X ∈

[
X̄n − za∕2

𝜎X√
n
, X̄n + za∕2

𝜎X√
n

])
≈ 1 − a.

In words, the mean 𝜇X is within za∕2
𝜎X√

n
of the sample mean X̄n with probability

close to 1 − a. The term in the brackets is therefore our (1 − a) interval estimator
for 𝜇X .16 Likewise, we can show that

(20.11) P
(

X̄n > 𝜇0 + za
𝜎X√

n
|𝜇X = 𝜇0

)
≈ a.

In words, if the mean were 𝜇0, then the probability that the sample mean would
exceed 𝜇0 + za

𝜎X√
n

is approximately a. Thus the critical values for the one-tailed hy-

pothesis test are 𝜇0 ± za
𝜎X√

n
. In all of these expressions, the left-hand term consists

of (i) a z-statistic and (ii) 𝜎X√
n
, the standard deviation of the estimator X̄n.

Typically, the variance 𝜎2
X is unknown, and so must be estimated using the

sample variance S 2
X = 1

n−1

∑n
i=1(Xi − X̄n)2. If the number of trials is large enough,

it is a reasonable approximation to replace the actual standard deviation 𝜎X with the
sample standard deviation SX =

√
S2

X in the formulas above. Stating this another
way, we replace SD(X̄n) =

𝜎X√
n

in the formulas above with its estimator

SX̄ =
SX√

n
,

known as the standard error of X̄n. With this substitution, formulas (20.10) and
(20.11) become

P
(
𝜇x ∈

[
X̄n − za∕2SX̄ , X̄n − za∕2SX̄

])
≈ 1 − a and

P
(
X̄n > 𝜇0 + zaSX̄ |𝜇x = 𝜇0

)
≈ a.

These formulas justify the procedures for inference about 𝜇 used in practice, which
we summarize next:

Procedures for inference about 𝝁.
Interval estimator endpoints, confidence level 1 − a: X̄n ± za∕2SX̄ .
Critical value for one-tailed hypothesis test of 𝜇 = 𝜇0, significance level a:

𝜇0 ± zasX̄ .

16We use a instead of 𝛼 here since 𝛼 is one of the parameters from the regression model.
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Critical values for two-tailed hypothesis test of 𝜇 = 𝜇0, significance level a:
𝜇0 ± za∕2sX̄ .

In the formulas for the critical values, sX̄ is the realization of the standard error SX̄ .

20.4.2 Interval estimators and hypothesis tests for 𝜷

With this background, the inference procedures for the regression parameters are
not hard to describe. We first consider the slope parameter 𝛽, which describes how
increasing the x value affects the expected y value. For instance, if we are studying
the relationship between education and income in a population, we likely care
most about the effect of additional education on income prospects. In this case,
the parameter 𝛽 describes the effect of an additional year of education on average
income.

Our point estimator for the slope parameter 𝛽 is the random variable B. It is
unbiased, has variance

Var(B) = 𝜎2

(n − 1)s 2
x

,

and is approximately normally distributed. Thus the same logic leading to
equations (20.10) and (20.11) here leads to

P
(
𝛽 ∈

[
B − za∕2

𝜎√
n−1 sx

,B + za∕2
𝜎√

n−1 sx

])
≈ 1 − a and(20.12)

P
(

B > 𝛽0 + za
𝜎√

n−1 sx

||| 𝛽 = 𝛽0

)
≈ a.(20.13)

If the conditional variance 𝜎2 were known, these formulas would define inter-
val estimators and hypothesis tests for 𝛽. Of course, the conditional variance 𝜎2 is
typically not known, so we estimate it using the sample conditional variance S 2.

To simplify the formulas to come, we let

(20.14) SB = S√
n − 1 sx

denote the standard error of 𝛽. It is our estimator for the standard deviation of B,
obtained by substituting S 2 for 𝜎2 in the formula for Var(B), and then taking the
square root. Substituting into equations (20.12) and (20.13), we obtain

P
(
𝛽 ∈

[
B − za∕2SB,B + za∕2SB

])
≈ 1 − a and

P
(
B > 𝛽0 + zaSB | 𝛽 = 𝛽0

)
≈ a.

These equations yield the following procedures for inference about 𝛽, which are
valid when the sample size n is large enough.
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Procedures for inference about 𝜷.
Interval estimator endpoints, confidence level 1 − a: B ± za∕2SB.
Critical value for one-tailed hypothesis test of 𝛽 = 𝛽0, significance level a:

𝛽0 ± zasB.
Critical values for two-tailed hypothesis test of 𝛽 = 𝛽0, significance level a:

𝛽0 ± za∕2sB.

In the formulas for the critical values, sB is the realization of the standard error SB.

■ Example Pricing kegs.

Our microbrewer estimated the relationship between the price of a keg of Trial
by Hops (x) and the number of kegs sold per week by each distributor (y) as
y = A + Bx = 93.63 − .8080x. Thus the brewer estimates that increasing the
price of a keg by one dollar reduces each distributor’s expected weekly sales by
.8080 kegs.

To get a sense of the precision of this point estimate, we can construct an
interval estimate of B with confidence level .95. To do so, we need to know the
number of trials, n = 33, the variance of the prices chosen by the brewer, s 2

x =
41.205, and the sample conditional variance, S 2 = 30.2237. From these we can
compute the standard error of 𝛽:

SB = S√
n − 1 sx

=
√

30.2237√
32

√
41.205

= .1514.

Using this standard error, we find that the .95 interval estimate for 𝛽 has endpoints

B ± z.025sB = −.8080 ± 1.96 × .1514 = −.8080 ± .2967.

The interval itself is [−1.1047,−.5113]. This interval has the usual interpretation:
it was generated by a procedure that captures the parameter 𝛽 in 95% of possible
samples.

The brewer is planning on raising keg prices by one dollar unless he is con-
vinced that if he does so, each distributor’s expected weekly keg sales per will
fall by more than .75. He therefore considers the following null and alternative
hypotheses:

H0 ∶ 𝛽 = −.75,

H1 ∶ 𝛽 < −.75.

With these hypotheses, rejection of the null is strong evidence that 𝛽 is less
than −.75.
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To test the null hypothesis against the alternative at a 5% significance level,
the brewer computes the critical value

𝛽0 − zasB = −.75 − 1.645 × .1514 = −.9991.

Since B = −.8080 > −.9991, he does not reject the null hypothesis. With this ev-
idence in hand, the brewer raises the price. ■

■ Example Greed and wrath.

Experimental economists study decision making in a laboratory environment with
the aim of confirming, refuting, and refining theoretical models of economic be-
havior. Many experiments consider versions of the ultimatum game. There are
two subjects, a proposer and a responder, who have the opportunity to split a fixed
amount of money. The proposer offers the responder a fraction of the cash—for
instance, he may offer her 30%, which would mean keeping 70% for himself.
The responder then chooses between accepting this offer or turning it down; in
the latter case, both subjects go home empty-handed.

If the responder only cared about money, it would make sense for her to accept
any positive offer. In reality, responders who feel they are being treated unfairly
will turn down positive offers, preferring to take revenge instead of cash. One
might expect the size of the stake to matter here. It is easy to turn down 30% of
one dollar; it is not as easy to turn down 30% of a thousand dollars.17

We run ultimatum game experiments on randomly selected U.S. undergradu-
ates, varying the stakes from $1 to $1000. After the stake s is announced, we ask
the responder to tell us (but not the proposer) the minimum fraction of the stake she
is willing to accept. Then the proposer makes his offer, and we divide the stake or
pay nothing according to whether or not the offer meets the responder’s threshold.

Suppose we believe that this experiment satisfies the assumptions of the
classical regression model, with y representing the responder’s threshold, and
x = log s the (base 10) logarithm of the stake. Under this logarithmic transforma-
tion of the stake, any given value of x corresponds to a stake of s = 10x dollars,
so that x = 0 corresponds to a stake of $1, x = 1 to $10, x = 2 to $100, and x = 3
to $1000.18

17The first experiment on the ultimatum game is Werner Güth, Rolf Schmittberger, and Bernd
Schwarze, “An Experimental Analysis of Ultimatum Bargaining,” Journal of Economic Behavior and
Organization 3 (1982), 367–388. Studies of the effects of stakes on behavior include Lisa A.
Cameron, “Raising the Stakes in the Ultimatum Game: Experimental Evidence from Indonesia,”
Economic Inquiry 37 (1999), 47–59, and Steffen Andersen et al., “Stakes Matter in Ultimatum
Games,” American Economic Review 101 (2011), 3427–3439.
18If this feels like a good moment to refresh your memories of log transformations, see
Section 11.3.2.
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Condition (C2) requires that E(Yi) = 𝛼 + 𝛽xi for some unknown parameters
𝛼 and 𝛽. Because x = log s, the slope parameter 𝛽 represents the change in the
expected threshold when the stake is increased by a factor of 10 from any initial
level.

We run 40 trials, choosing a range of stakes such that x̄ = 1.35 and s 2
x =

.9513. Evaluating the results, we obtain the OLS estimates A = .4532 and B =
−.08295 and the sample conditional variance S 2 = .01116.

What is the .95 interval estimate for 𝛽? The standard error of 𝛽 can be com-
puted as

SB = S√
n − 1 sx

=
√
.01116√

39
√
.9513

= .01735.

Thus the .95 interval estimate for 𝛽 has endpoints

B ± z.025SB = −.08295 ± 1.96 × .01735 = −.08295 ± .03401.

and so the interval is [−.11696,−.04894].
Suppose we would like to test the null hypothesis that doubling the stake

lowers the expected threshold by .03, doing so against a two-sided alternative hy-
pothesis at a 5% significance level. To accomplish this, observe that since log 2s =
log 2 + log s, doubling the stake s corresponds to increasing x = log s by log 2 ≈
.3010. Thus for doubling the stake to lower the expected threshold by .03, 𝛽 must
satisfy 𝛽 log 2 = −.03, implying that 𝛽 = −.03∕ log 2 = −.0997. Our null and al-
ternative hypotheses are thus

H0 ∶ 𝛽 = −.0997,

H1 ∶ 𝛽 ≠ −.0997.

The critical values for the hypothesis test are

c± = 𝛽0 ± z.025sB = −.0997 ± 1.96 × .01735 = −.0997 ± .03401,

so that c− = −.1337 and c+ = −.0657. Since B = −.08295 lies between these
values, we do not reject the null hypothesis. (Actually, we could have anticipated
this conclusion, since −.0997 was inside the .95 interval estimate for 𝛽—see
Section 16.4.) ■

20.4.3 Interval estimators and hypothesis tests for conditional
means

The other quantities we commonly want to estimate are the conditional means
𝛼 + 𝛽x for given values of x. In an experiment to evaluate demand, 𝛼 + 𝛽x is the
expected quantity sold when the price is set at x. In a study of the relation be-
tween education and income, it is the mean income level in the subpopulation
with education level x.
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We saw in Section 20.2.3 that the estimator for the subpopulation mean,
A + Bx, is unbiased (E(A + Bx) = 𝛼 + 𝛽x), that its variance is

Var(A + Bx) = 𝜎2

(
1
n
+ (x − x̄)2

(n − 1)s 2
x

)
,

and that it is approximately normally distributed. Knowing the sample conditional
variance S 2, we can estimate the standard deviation of A + Bx using the standard
error of A + Bx, defined by

(20.15) SA+Bx = S

√
1
n
+ (x − x̄)2

(n − 1)s 2
x

.

Following the logic from the previous section, we find that

P
(
𝛼 + 𝛽x ∈

[
A + Bx − za∕2SA+Bx,A + Bx + za∕2SA+Bx

])
≈ 1 − a, and(20.16)

P
(
A + Bx > m0 + zaSA+Bx | 𝛼 + 𝛽x = m0

)
≈ a.(20.17)

These facts are summarized in the following inference procedures for conditional
means, which again are valid when the sample size n is large enough.

Procedures for inference about 𝜶 + 𝜷x.
Interval estimator endpoints, confidence level 1 − a: A + Bx ± za∕2SA+Bx.
Critical value for one-tailed hypothesis test of 𝛼 + 𝛽x = m0, significance

level a: m0 ± zasA+Bx.
Critical values for two-tailed hypothesis test of 𝛼 + 𝛽x = m0, significance

level a: m0 ± za∕2sA+Bx.

In the formulas for the critical values, sA+Bx is the realization of the standard error
SA+Bx.

■ Example How many kegs?

If the brewer of Trial by Hops decides to charge $86 per keg, what can we say
about the expected number of kegs sold weekly by each distributor? The expected
number of kegs sold at a price of $86 is 𝛼 + 86𝛽. Using the OLS estimates, we
obtain a point estimate of the expected number of kegs sold:

A + 86B = 93.62585 + 86 × (−.80805) = 24.1333.

To compute a 95% confidence interval for 𝛼 + 86𝛽, we first compute the
standard error of this conditional mean. Using the facts that n = 33, x̄ = 80.727,
s 2
x = 41.205, and S 2 = 30.224, we obtain

SA+86B = S

√
1
n
+ (x − x̄)2

(n − 1)s 2
x

=
√

30.224 ×
√

1
33

+ (86 − 80.727)2
32 × 41.205

= 1.246.
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Thus the 95% confidence interval for the conditional mean has endpoints

A + 86B ± z.025SA+86B = 24.1333 ± 1.96 × 1.246 = 24.1333 ± 2.4427,

so the interval itself is [21.6906, 26.5760].
What if we considered a price of $95 a keg? The point estimate of the expected

number of kegs sold becomes

A + 95B = 93.62585 + 95 × (−.80805) = 16.8611,

with standard error

SA+95B = S

√
1
n
+ (x − x̄)2

(n − 1)s 2
x

=
√

30.224 ×
√

1
33

+ (95 − 80.727)2
32 × 41.205

= 2.363.

The endpoints of the 95% confidence interval for 𝛼 + 95𝛽 are thus

A + 95B ± z.025SA+95B = 16.8611 ± 1.96 × 2.363 = 16.8611 ± 4.6315,

so the interval itself is [12.2296, 21.4926].
Notice that the confidence interval when x = 95 is considerably wider than

the confidence interval when x = 86. Because 95 is further than 86 from the mean
x̄ = 80.727, the estimator of the conditional mean has a greater variance in the
former case than the latter, resulting in the wider confidence interval. ■

Excel calculation: Standard errors
The regression_inference.xlsxworkbook computes standard errors for
the slope 𝛽 and for conditional means 𝛼 + 𝛽x automatically. Figure 20.4 shows
that for the Trial by Hops data, the standard error of 𝛽 is SB = .1514. To obtain
the standard error of 𝛼 + 𝛽x, you must enter the value of x of interest in the light
blue cell. In the workbook shown in Figure 20.4, we entered x = 86; the workbook
reports a standard error of SA+Bx = 1.246.

20.4.4 Population regressions vs. sample regressions

The previous and current chapters have used regression in two different contexts
for two different purposes. In Chapter 19, we computed the population regression
line y = 𝛼 + 𝛽x for data describing a population. There, the slope 𝛽 and intercept
𝛼 were descriptive statistics; they conveniently summarized linear associations in
the population data. In this chapter, we’ve computed the sample regression line
y = A + Bx for data obtained from a sample. In the case of random sampling from
a population, the sample regression line provides an estimate of the population
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Figure 20.5: An appropriate analysis of population data using regression_descriptive.xlsx.

50

0.22 32,406 33041.38 –635.38 0.27172

0.266 42,713 37213.7 5499.30 37732.52

0.256 33,560 36306.67 –2746.67 0.04684316

0.189 31,688 30229.6 1458.40 0.002194282

0.299 41,034 40206.89 827.11 5254.696114

0.359 41,154 45649.04 –4495.04 27611831.25

0.356 52,900 45376.94 7523.06 199.0270656

0.287 38,695 39118.46 –423.46 0.808571359

0.253 36,849 36034.57 814.43 0.653787643
0.275 33,887 38030.02 –4143.02
0.296 40,242 39934.78 307.22
0.239 30,809 34764.73 –3955.73
0.306 40,865 40841.81 23.19 13086.80713
0.225 33,163 33494.89 –331.89 90702.60882
0.251 36,977 35853.16 1123.84
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0.214 36,062 32497.17 3564.83 9559557.174
0.269 35,981 37485.81 –1504.81
0.357 47,419 45467.64 1951.36
0.382 49,578 47735.2 1842.80
0.246 33221 35399.65 –2178.65
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regression line y = 𝛼 + 𝛽x that we would have obtained if we had access to the
complete population data.

Population regressions and sample regressions are different animals. Never-
theless, it is a common error to treat population data as though it were data from
a sample. What are the consequences of doing so?

The worksheetch19_data.xlsx/states presents the percentage of res-
idents who are college graduates and per capita income in each of the 50 U.S. states
in 2009.19 Since this data set completely describes its population, the appropri-
ate use of regression here is to obtain descriptive statistics. Figure 20.5, which
presents the output of regression_descriptive.xlsx for this data set,
shows that the regression line for the data set is y = 𝛼 + 𝛽x = 13,087 + 90,703x.
Thus, to summarize the relationship between educational attainment and income
in the 50 states, we can say that an increase in the percentage of residents who are
college graduates of one point is associated with an additional $907 in per capita
income.

What would happen if we treated this population data as though it were sam-
ple data? Figure 20.6 shows the output of regression_inference.xlsx
for the data set. Notice first that this workbook computes the “sample regression
line” y = A + Bx = 13,087 + 90,703x. Evidently, the slope and intercept of the re-
gression line are the same whether we treat the data as population data or sample
data. This is because in either case, the regression line is the one that minimizes
the sum of squared residuals.

Not all of the numbers reported in regression_inference.xlsx are
so innocuous. For instance, the workbook reports that the standard error of B is

19The percentage of college graduates is among residents at least 25 years old. The data come from
the U.S. Census Bureau and the Bureau of Economic Analysis of the U.S. Department of Commerce.
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Figure 20.6: An inappropriate analysis of population data using regression_inference.xlsx.

X Y A + Bx Y – (A + Bx) 50
0.22 32,406 33041.38 –635.38 0.27172
0.266 42,713 37213.7 5499.30 37732.52
0.256 33,560 36306.67 –2746.67 0.047318737
0.189 31,688 30229.6 1458.40 0.002239063
0.299 41,034 40206.89 827.11 5308.04465
0.359 41,154 45649.04 –4495.04 28175338.01
0.356 52,900 45376.94 7523.06 203.0888424
0.287 38,695 39118.46 –423.46 0.808571359
0.253 36,849 36034.57 814.43 0.653787643
0.275 33,887 38030.02 –4143.02
0.296 40,242 39934.78 307.22
0.239 30,809 34764.73 –3955.73
0.306 40,865 40841.81 23.19 13086.80713
0.225 33,163 33494.89 -331.89 90702.60882
0.251 36,977 35853.16 1123.84
0.295 37,988 39844.08 –1856.08
0.21 31,754 32134.35 –380.35 9957872.057
0.214 36,062 32497.17 3564.83
0.269 35,981 37485.81 –1504.81
0.357 47,419 45467.64 1951.36 9526.910562
0.382 49,578 47735.2 1842.80
0.246 33221 35399.65 –2178.65
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0.265 34001 37123 –3122.00 477977858.7
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SB = 9527. If the data actually came from a sample, and the assumptions of the
classical regression model were satisfied, then this number would be an estimate
of the standard deviation of the OLS estimator B. It would indicate the likely size
of the error in our estimate of the unknown parameter 𝛽, and so could be used to
construct interval estimates and run hypothesis tests for 𝛽.

But our data is not from a sample—it is a complete account of the variables in
question in all 50 states. The slope of the regression line, 90,703, is not an estimate
of 𝛽; it is 𝛽. There is no random sample, and nothing is being estimated, so there
is no role for a standard error. The output SB = 9527 computed by the workbook
is meaningless.

Most commercial regression packages are designed with sample data in mind.
There is nothing preventing a user from running these packages on population data,
and then using the results to construct “confidence intervals,” or to conduct “hy-
pothesis tests.” To a novice, an analysis of population data that “rejects a zero-slope
null hypothesis at significance level .05” may sound impressively scientific. But
when you have complete population data, applying the tools of statistical inference
is not even wrong—it makes no sense at all.

20.5
Small Samples and the Classical Normal
Regression Model

In Chapter 17, we introduced techniques for drawing inferences about an unknown
mean based on small samples. The procedures required the additional assumption
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that each trial follow a normal distribution, and led to inference procedures based
on the t distribution. Similar ideas apply in the context of regression inference,
provided that one begins with a regression model that invokes a suitable normality
assumption.

20.5.1 The classical normal regression model

In order to perform small sample inference in regression, we need to assume that
conditional on the choice of the corresponding x variable, each y observation is
drawn from a normal distribution. We therefore add this assumption to the classical
regression model.

The classical normal regression model.

(N1) Fixed x sampling: x1,… , xn are fixed and not all
identical;

Y1,… ,Yn are independent
random variables.

(N2) Linearity of conditional means: E(Yi) = 𝛼 + 𝛽xi.
(N3) Constant conditional variances: Var(Yi) = 𝜎2.
(N4) Conditional normality: Yi is normally distributed.

One can likewise define the random sampling normal regression model by adding
a conditional normality assumption to our earlier random sampling model, with
similar consequences for small-sample inference—see Section 20.A.1.

The classical normal regression model completely specifies the distribution of
observation Yi in terms of the choice of subpopulation xi and the model’s param-
eters: succinctly, it requires that Yi ∼ N(𝛼 + 𝛽xi, 𝜎

2). Of course, the assumptions
about the mean and variance of Yi are the same as before; only the normality as-
sumption is new.

■ Example The classical normal regression model in pictures.

To illustrate the assumptions of the classical normal regression model in the con-
text of an experiment, we consider a firm whose choice of advertising expenditures
(x, in millions of dollars) influences but does not completely determine its sales
volume (y, in millions of units).

Figures 20.7 and 20.8 present possible conditional distribution of sales vol-
umes y for each choice of advertising expenditures x. The height of the surface at
point (x, y) represents the density at y of the conditional distribution of Yi given x.
Thus for any choice of x, the conditional distribution of Yi given x is captured by
the cross section of the surface at x. (For instance, the conditional distribution of
sales volume when advertising expenditures are 0 is described by the edge of the
surface following the y axis.)

Figure 20.7 describes an environment that satisfies the assumptions of the
classical normal regression model, with conditional mean function y = 2.5 + .2x
and conditional variance 𝜎2 = .49. For each level of expenditures x, the conditional
distribution of sales volume is described by the bell-shaped curve of the normal
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Figure 20.7: A collection of
conditional distributions
satisfying the classical
normal regression model
(two viewpoints).

distribution, as specified in (N4). Since the mean of a normal distribution corre-
sponds to the highest point on its density function, the fact that the highest points
as x varies lie on a straight line tells us that the conditional expectation function
is linear, as required by (N2). Finally, the fact that the bell-shaped curve for each
x value has the same “width” reflects that all conditional variances are equal, as
required by (N3).

For a counterpoint, Figure 20.8 illustrates an environment in which all con-
ditional distributions are normal but the other two assumptions about conditional
distributions fail. Looking at the highest points on the bell-shaped curves, we see
that increasing advertising expenditures increases expected sales volumes quickly
when advertising expenditures are low, but more slowly when expenditures are
high. This violates (N2). Also, the bell-shaped curves along each x cross section
are tall and thin when x is small, but shorter and fatter when x is large, reflecting
that the variance in sales volumes increases as advertising expenditures grow.
This violates (N3).
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Figure 20.8: A collection of
normal conditional
distributions that fail (N2)
and (N3).
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■

20.5.2 Interval estimators and hypothesis tests for 𝜷

Chapter 17 introduced our small-sample inference procedures for i.i.d. normal tri-
als {Xi}n

i=1. Because the trials are normal and independent, their sample mean
X̄n =

∑n
i=1 Xi is normally distributed as well. In Section 17.A.4, we used this and

other facts to derive the key result behind our inference procedures: again letting
SX̄ = SX√

n
denote the standard error of X̄n, we have that

(20.18)
X̄n − 𝜇

SX̄
∼ t(n − 1).

That is, the left-hand side of (20.18), called the t-statistic for 𝜇 for i.i.d. normal
trials, follows a t distribution with n − 1 degrees of freedom.

Analogous results hold for the classical normal regression model. First, since
B is a linear function of the observations Yi, and since the Yi are independent nor-
mal random variables, B is normally distributed.20 Second, using a more involved
version of the arguments from Section 17.A.4, we can establish the following ana-
logue of fact (20.18):

(20.19)
B − 𝛽

SB
∼ t(n − 2).

Here SB is the standard error for 𝛽 defined in (20.14). The left-hand side of
(20.19) is called the t-statistic for 𝛽 in the classical normal regression model.

20For a reminder of why this is so, see Sections 6.4.1 and 6.6.1.
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Fact (20.19) says that this statistic follows a t distribution, this time with n − 2
degrees of freedom.

Fact (20.19) is the basis for our small sample inference procedures for the clas-
sical normal regression model. Concerning the procedures themselves, the main
difference from Section 20.4.2 is the replacement of z-values with t-values from
the t(n − 2) distribution.

Procedures for estimating 𝜷 (small samples).
In the classical normal regression model, for any sample size n:
Interval estimator endpoints, confidence level 1 − a: B ± tn−2

a∕2
SB.

Critical value for one-tailed hypothesis test of 𝛽 = 𝛽0, significance level a:
𝛽0 ± tn−2

a sB.
Critical values for two-tailed hypothesis test of 𝛽 = 𝛽0, significance level a:

𝛽0 ± tn−2
a∕2

sB.

■ Example Customer service.

A technology industry analyst is studying the relationship between wages paid
to customer service representatives and customer satisfaction for Silicon Valley
technology firms. For a random sample of 16 firms, she obtains the average wages
(x, in dollars) and the average score on a customer satisfaction survey (y, on a
100-point scale). The analyst believes that the data for the population as a whole
is well approximated by the classical normal regression model for some unknown
parameters 𝛼, 𝛽, and 𝜎2.

The results of the sample and the output of the regression_inference
.xlsx workbook are presented in Figure 20.9. The OLS estimate of the regres-
sion line is y = A + Bx = −1.920 + 3.424x. Thus, the analyst estimates that in the
population as a whole, a one-dollar increase in average wage is associated with a
3.4-point increase in customer satisfaction ratings. The variance of the wages is
s 2
x = 6.197, and the sample conditional variance is S 2 = 35.356.

To obtain a .95 confidence interval for 𝛽, the analyst computes the standard
error of 𝛽:

SB = S√
n − 1 sx

=
√

35.356√
15

√
6.197

= .6167.

(She also could have read this directly from the workbook.) Using the distri-
butions.xls workbook, or inputting “=T.INV(.975,14)” into a blank
workbook cell, the analyst obtains the t-value t14

.025 = 2.145. Thus the .95 interval
estimate for 𝛽 has endpoints

B ± t14
.025SB = 3.424 ± 2.145 × .6167 = 3.424 ± 1.323,

and so the interval is [2.101, 4.747].
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Figure 20.9: Regressing customer satisfaction on wages of customer service representatives using
regression_inference.xlsx.

X Y A + Bx Y – (A + Bx) 16
10.25 37.4 33.17237 4.23 14.475
11.05 32.6 35.91133 –3.31 47.6375
12.5 36.3 40.87569 –4.58 2.489377432
12.75 50 41.73162 8.27 6.197
12.8 42.3 41.9028 0.40 10.27805916
13.5 45 44.29939 0.70 105.6385
13.6 42.7 44.64176 –1.94 21.21666667
14.1 36.9 46.35361 –9.45 0.829230547
14.25 50.1 46.86717 3.23 0.6876233
14.75 44.4 48.57902 –4.18
15.25 46 50.29087 –4.29
15.8 57.3 52.1739 5.13
16.3 60 53.88575 6.11 –1.920552283
16.9 62.7 55.93997 6.76 3.42369964
18.2 49.7 60.39078 –10.69
19.6 68.8 65.18396 3.62

35.35607784

0.616730836

86
292.5176167
44.13671319

F 30.81768332
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The analyst would like to test the null hypothesis that 𝛽 is 4.5 against the
alternative that it is smaller:

H0 ∶ 𝛽 = 4.5

H1 ∶ 𝛽 < 4.5.

The critical value for a hypothesis test with significance level .05 is

𝛽0 − t14
.05sB = 4.5 − 1.761 × .6167 = 3.414.

Since B = 3.424 > 3.414, she does not reject the null hypothesis at this signifi-
cance level.

If instead the analyst uses a significance level of .10, she obtains a critical
value of

𝛽0 − t14
.10sB = 4.5 − 1.345 × .6167 = 3.671.

Since B = 3.424 < 3.671, she rejects the null hypothesis at this less demanding
significance level. ■



Trim Size: 7.5in x 9.25in Sandholm ch20.tex V1 - 10/05/2018 3:40pm Page 34�

� �

�

34 CHAPTER 20 Simple Regression: Statistical Inference

■ Example Sunny days and solar power.

Insolation, a measure of the average daily amount of solar radiation at a given
location over the course of a year, describes how much solar energy is available
for conversion into electrical energy by solar panels. Of course, the amount of
electrical energy obtained also depends on the size and quality of the panel.

Insolation in Honolulu is 6.02 kWh/(m2⋅ day) (kilowatt hours per square meter
per day). But since the City and County of Honolulu encompasses the entire island
of Oahu, this number masks a great deal of variation.

An Oahu-based property manager is considering adding SolarPro solar panels
to the rooftops of all of the properties she manages. To test the quality of the
panels, she installs them on 11 of her properties. She looks up the insolation at
each property’s address and measures the panels’ average daily electrical output
per square meter over the course of a year. Her data is presented in the table below.

insolation ( kWh
m2⋅day

) electrical output ( kWh
m2⋅day

)

5.91 1.339

5.91 1.414

5.92 1.372

6.10 1.411

6.05 1.384

6.45 1.508

5.62 1.294

6.27 1.457

6.49 1.457

5.60 1.250

6.35 1.461

The manager believes that the performance of the solar panels satisfies the
assumptions of the classical normal regression model. The parameter 𝛽 is the ex-
pected increase in electrical output resulting from a unit increase in insolation, and
so is a measure of the panels’ efficiency. Since insolation and electrical output are
measured in the same units, 𝛽 is unit free.

The property manager only wants to buy the panels if she is convinced that
the efficiency is at least .20. She thus considers the following null and alternative
hypotheses:

H0 ∶ 𝛽 = .20

H1 ∶ 𝛽 > .20

With these hypotheses, rejecting the null is strong evidence that the efficiency is
as high as the manager would like.
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After some number crunching, the manager obtains the following statistics:

A = −.05130, B = .2387, S 2 = .0007878, x̄ = 6.0609, s 2
x = .09367.

Thus the standard error for 𝛽 is

SB = S√
n − 1 sx

=
√
.0007878√

10
√
.09367

= .02900.

The critical value for a hypothesis test with significance level .05 is

𝛽0 + t9
.05sB = .20 + 1.833 × .02900 = .253.

Since B = .2387 < .253, the manager does not reject the null hypothesis and so
does not buy the panels.

The manager’s point estimate of the panels’ efficiency, B = .2387, is closer to
.25 than to .20. However, given her small sample, this evidence was not enough to
reject the null hypothesis. If the same values of B, S 2, and s 2

x were obtained with
a larger sample, then the standard error SB would have been smaller and might
have led her to reject the null hypothesis in favor of the alternative—see Exercise
20.5.8. ■

20.5.3 Interval estimators and hypothesis tests for conditional
means

The normality assumption (N4) also allows us to perform small-sample inference
about conditional means 𝛼 + 𝛽x. The reasoning is similar to that above. Since the
estimator A + Bx is a linear function of the observations Yi, and since the Yi are
independent, A + Bx is normally distributed. In this case, the t-statistic and its
distribution are

(A + Bx) − (𝛼 + 𝛽x)
SA+Bx

∼ t(n − 2),

where SA+Bx is the standard error for 𝛼 + 𝛽x defined in (20.15). This fact can
be used to derive the small-sample procedures below, which differ from those
in Section 20.4.3 in the replacement of z-values with t-values from the t(n − 2)
distribution.

Procedures for inference about 𝜶 + 𝜷x (small samples).
In the classical normal regression model, for any sample size n:
Interval estimator endpoints, confidence level 1 − a: A + Bx ± tn−2

a∕2
SA+Bx.

Critical value for one-tailed hypothesis test of 𝛼 + 𝛽x = m0, significance
level a: m0 ± tn−2

a sA+Bx.
Critical values for two-tailed hypothesis test of 𝛼 + 𝛽x = m0, significance

level a: m0 ± tn−2
a∕2

sA+Bx.
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■ Example Sunny days revisited.

The property manager on Oahu is considering installing solar panels at a lo-
cation with insolation 6.10. What is the 95% confidence interval for the expected
electrical output?

The expected electrical output is 𝛼 + 6.10𝛽, which we estimate as

A + 6.10B = −.05130 + 6.10 × .2387 = 1.4045.

The standard error of 𝛼 + 6.10𝛽 is

SA+6.10B = S

√
1
n
+ (6.10 − x̄)2

(n − 1)s 2
x

=
√
.0007878 ×

√
1
11

+ (6.10 − 6.0609)2
10 × .09367

= .008538.

The 95% confidence interval has endpoints

A + 6.10B ± t9
.025SA+6.10B = 1.4045 ± 2.262 × .008538 = 1.4045 ± .0193.

Thus the 95% confidence interval is [1.3852, 1.4238]. ■

20.5.4 Prediction intervals*

The classical normal regression model provides a setting for answering a new sort
of question, one of prediction. As motivation, suppose that a monopolist is running
an experiment to estimate how demand in its market varies with price. She believes
that this relationship is as described in the classical normal regression model: given
a price xi, the quantity demanded Yi is normally distributed with mean 𝛼 + 𝛽xi and
variance 𝜎2. The parameters 𝛼, 𝛽, and 𝜎2 are unknown, but the monopolist can run
an experiment with n trials, {(xi,Yi)}n

i=1, in order to estimate them.
Suppose that after the experiment, the monopolist sets a price of x. This will

lead to a quantity sold of Y , a normally distributed random variable with mean
𝛼 + 𝛽x and variance 𝜎2. From our previous analyses, we know that the monopolist
can estimate the expected quantity sold, 𝛼 + 𝛽x, using the estimator A + Bx. This
estimator is unbiased and, under assumption (N4), normally distributed.

Now we want to consider a trickier question: Can the monopolist specify a
random interval that provides a probabilistic statement about the actual quantity
she will sell?

Random intervals that provide probabilistic statements about future observa-
tions are known as prediction intervals. Prediction intervals must account for
two distinct sources of randomness. First, the estimate of the conditional mean
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𝛼 + 𝛽x using the estimator A + Bx comes with some dispersion. This dispersion is
described by its variance, which we saw in equation (20.6) is

(20.20) Var(A + Bx) = 𝜎2

(
1
n
+ (x − x̄)2

(n − 1)s 2
x

)
.

In addition, the normally distributed observation Y itself will exhibit some disper-
sion around its mean of 𝛼 + 𝛽x. By assumption (N3), the variance of this observa-
tion is Var(Y) = 𝜎2.

Combining these facts with some basic properties of normal random variables
will enable us to define the prediction interval. It is natural to center the interval
at A + Bx, since this is our estimate of the expected value of Y . To determine how
wide to make the interval, we need to know how far Y is likely to be from A + Bx.
More precisely, we need to know the distribution of the difference Y − (A + Bx).

To determine this distribution, we use the facts above, and one further fact
that we have not mentioned: that A + Bx, which depends only on the initial n ob-
servations, and Y , the new observation, are independent. The mean and variance
of Y − (A + Bx) are thus

E(Y − (A + Bx)) = E(Y) − E(A + Bx) = (𝛼 + 𝛽x) − (𝛼 + 𝛽x) = 0;

Var(Y − (A + Bx)) = Var(Y) + Var(−(A + Bx)) = 𝜎2 + 𝜎2

(
1
n
+ (x − x̄)2

(n − 1)s 2
x

)
.

The calculation of the variance uses the independence of A + Bx and Y . Finally,
since these two random variables are independent and normally distributed, their
difference is normally distributed as well. Summing up, we have

(20.21) Y − (A + Bx) ∼ N

(
0, 𝜎2

(
1
n
+ (x − x̄)2

(n − 1)s 2
x

+ 1

))
.

Proceeding with a typical normal distribution calculation, we can determine
the endpoints of the prediction interval when 𝜎2 is known (Exercise 20.M.7). In the
usual case in which 𝜎2 is unknown, we can derive the prediction interval from the
fact that a suitably chosen t-statistic has a t(n − 2) distribution. Instead of providing
a detailed derivation, we simply state the end result.

Prediction intervals.
In the classical normal regression model, consider predicting the y value Y of

a randomly chosen individual with x value x. The random interval with endpoints

(20.22) (A + Bx) ± tn−2
a∕2 S

√
1
n
+ (x − x̄)2

(n − 1)s 2
x

+ 1,

called the (1− a) prediction interval for Y, will contain Y with probability 1 − a.



Trim Size: 7.5in x 9.25in Sandholm ch20.tex V1 - 10/05/2018 3:40pm Page 38�

� �

�

38 CHAPTER 20 Simple Regression: Statistical Inference

A straightforward calculation shows that the prediction interval (20.22) can
also be expressed as

(20.23) (A + Bx) ± tn−2
a∕2

√
S 2

A+Bx + S 2.

This alternate formula is convenient when we already know the standard error
SA+Bx—for instance, from the output of the regression_inference.xlsx
workbook.

As with all of our inference procedures, the probability statements concern-
ing prediction intervals should be understood in the ex ante sense. The random
interval (20.22) contains the new observation Y with probability 1 − a at a time
before either the random sample or Y itself is realized. The fact that the random-
ness is resolved in two stages—the sample is observed first, and only later is Y
observed—makes prediction intervals even trickier to interpret than confidence
intervals. We explore this point in Exercise 20.5.9.

■ Example Still sunny.

The Oahu property manager plans to install new solar panel at a location with
insolation 6.10. What is the .95 prediction interval for the new panel’s output?

The endpoints of the prediction interval are

(A + 6.10B) ± t9
.025S

√
1
n
+ (6.10 − x̄)2

(n − 1)s 2
x

+ 1

= 1.4045 ± 2.262 ×
√
.0007878 ×

√
1

11
+ (6.10 − 6.0609)2

10 × .09367
+ 1

= 1.4045 ± .0664.

The .95 prediction interval is thus [1.3381, 1.4709]. Because it accounts not only
for the randomness in the sample but also for the randomness in new panel’s
output, the prediction interval is wider—more than three times wider—than the
.95 confidence interval for 𝛼 + 6.10𝛽 computed earlier, whose endpoints were
1.4045 ± .0193.

Figure 20.10 presents output of the regression_inference.xlsx for
the solar panel data. The values of A, B, S 2, x̄, s 2

x , and SB reported above are
all shown. To draw inferences about conditional means and to construct predic-
tion intervals, we enter insolation level x = 6.1 in the blue cell in the third col-
umn. The workbook returns both the estimated conditional mean A + 6.10B =
1.4045 and the standard error SA+6.10B = .008538. The width of the prediction
interval for a new solar panel’s output can be obtained from SA+6.10B and S 2 using
formula (20.23).
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Figure 20.10: Analysis of the solar panel data using regression_inference.xlsx.

X Y A + Bx Y – (A + Bx) n 11
5.91 1.339 6.060909091
5.91 1.414 1.395181818
5.92 1.372 0.306054065

6.1 1.411 0.093669091
6.05 1.384 0.077744219

6.45 1.508 0.006044164
5.62 1.294 0.022354818
6.27 1.457 0.939517519
6.49 1.457
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■

20.6 Analysis of Residuals, R2, and F Tests

20.6.1 Sums of squares and R2

Section 19.4 introduced analysis of residuals of the population regression line
y = 𝛼 + 𝛽x, which minimizes the sum of squared residuals over the entire popula-
tion {(xj, yj)}N

j=1. As we have seen, the sample regression line y = A + Bx is defined
in the same way, but using the results of a random sample. Because both lines are
constructed in the same way, the analysis of residuals of the population regression
line from Section 19.4 carries over to the sample regression line, but with one key
change. The earlier equations about population data become equations that are
true for all realizations of the sample. These equations are expressed in terms of
the random variables that describe the sample from the ex ante point of view.

For example, one of our basic facts about the population regression residuals
is the sum-of-squares equation,

(19.16)
N∑

j=1

(yj − 𝜇y)2 =
N∑

j=1

(ŷj − 𝜇y)2 +
N∑

j=1

(yj − ŷj)2.

This equation provided an alternate way of writing the decomposition of variance
𝜎2

y = 𝜎2
ŷ
+ 𝜎2

u (see (19.14)).
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In the present context of the sample regression line, the sample analogue of
(19.16) is true for every realization of the sample. It is therefore stated in ex ante
terms, using the random variables that describe the sample.

The sum-of-squares equation (ex ante version).

(20.24)
n∑

i=1

(Yi − Ȳ)2 =
n∑

i=1

(Ŷi − Ȳ)2 +
n∑

i=1

(Yi − Ŷi)2.

Here Ŷi = A + Bxi is the ith sample prediction; see equation (20.9).
Our other main formula from Section 19.4 concerned the relative quality of

the predictions of the regression line and the mean line, expressed in terms of
the squared correlation coefficient 𝜌2

x,y. We can write this formula using variances
(19.10) or sums of squares (19.15):

(19.15)
𝜎2

u

𝜎2
y

=
∑N

j=1 (yj − ŷj)2∑N
j=1 (yj − 𝜇y)2

= 1 − 𝜌2
x,y.

These equations say that the variance of prediction errors from the regression line
is only 1 − 𝜌2

x,y as large as the variance of prediction errors from the mean line.
Thus if 𝜌2

x,y is near 1, the regression line tends to generate much more accurate
predictions than the mean line (see Section 19.4.2).

To state the sample analogue of this relation, we introduce the sample corre-
lation coefficient,

R =
SxY

sxSY
.

The fact that the sample analogue of (19.15) holds for every realization of the
sample is expressed as

(20.25)

∑n
i=1 (Yi − Ŷi)2∑n
i=1 (Yi − Ȳ)2

= 1 − R2.

Equation (20.25) shows that the random variable R2, named the squared
sample correlation coefficient (but usually called “R squared”), provides a mea-
sure of relative quality of fit. Specifically, it indicates how much better the sample
data is fit by the sample regression line y = A + Bx than by the sample mean line,
y = Ȳ . An R2 near 1 means that the regression line fits the sample data much better
than the mean line, and an R2 near 0 means that the fit of the latter and the former
are nearly the same. These are the same interpretations we gave to 𝜌2 earlier, but
now in the context of sample data rather than population data.
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Excel calculation: Sums of squares and R2

The regression_inference.xlsx workbook computes sums of squares
and R2 automatically. Looking back at Figure 20.9, we see that for the
wage/customer satisfaction data, these quantities are

n∑
i=1

(Yi − Ȳ)2 = 1584.58,
n∑

i=1

(Ŷi − Ȳ)2 = 1089.59,
n∑

i=1

(Yi − Ŷi)2 = 494.99,

and R2 = .6876.

Notice that

n∑
i=1

(Yi − Ȳ)2 = 1584.57 = 1089.59 + 494.99 =
n∑

i=1

(Ŷi − Ȳ)2 +
n∑

i=1

(Yi − Ŷi)2

and ∑n
i=1 (Yi − Ŷi)2∑n
i=1 (Yi − Ȳ)2

= 494.99
1584.58

= .3124 = 1 − .6876 = 1 − R2,

as required by equations (20.24) and (20.25).

20.6.2 The F test for 𝜷 = 0

We now describe how in the classical normal regression model, R2 can be used to
test the null hypothesis that the population regression slope 𝛽 is zero against the
two-sided alternative hypothesis. Specifically, large enough values of R2 will lead
us to reject the null hypothesis.

Why should such a test work? When 𝛽 is equal to zero, then 𝛼 = 𝜇y − 𝛽𝜇x =
𝜇y, so the population regression line y = 𝛼 + 𝛽x and the population mean line y =
𝜇y are identical. In this case, the sample regression line is likely to be close to the
sample mean line. If this happens, both lines will fit the sample data about equally
well, and so, by equation (20.25), R2 will be close to zero. Therefore, drawing a
sample whose R2 is not close to zero would be an unlikely event if 𝛽 were equal
to zero. This suggests that an R2 far from 0 should allow one to reject the null
hypothesis that 𝛽 = 0. In this section, we derive such a test under the assumptions
of the classical normal regression model. Section 20.6.3 considers the robustness
of the test to non-normal trials.

The hypothesis test for 𝛽 = 0 based on R2 makes use of the random variable

(n − 2) R2

1 − R2
,
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known as the F-statistic. The test is based on the following fact, which relates the
F-statistic to an F distribution (Section 17.A.5).

The F-statistic has an F distribution.
Suppose the assumptions of the classical normal regression model hold with

𝛽 = 0. Then

(20.26) (n − 2) R2

1 − R2
∼ F(1, n − 2).

For a point of comparison, recall that in Chapter 17, we defined a random
variable we suggestively called the t-statistic, and based our inference procedures
on the fact (that required a proof!) that this random variable has a t distribution.
Here we are following similar steps, introducing a random variable suggestively
called the F-statistic, and basing our inference procedures on the fact (that again
requires a proof—see below) that this random variable has an F distribution.

To use (20.26) to define a hypothesis test, we need to use F-values, which
are obtained from F distributions in the same way that t-values are obtained from
t distributions. The main novelty here is that F distributions are defined by two
parameters, k and d. Getting into specifics, recall from Appendix 17.A (online)
that the right-tail F-value F̄ k,d

a is defined by P(F > F̄ k,d
a ) = a, where F ∼ F(k, d).

In words, a random variable drawn from an F(k, d) distribution exceeds the F-value
F̄ k,d

a with probability a.
We can now present the F test for simple regression.

The F test for 𝜷 = 0 against the two-sided alternative.
In the classical normal regression model, we reject the null hypothesis

H0 ∶ 𝛽 = 0 in favor of the alternative H1 ∶ 𝛽 ≠ 0 at significance level a if

(n − 2) R2

1 − R2
> F̄ 1,n−2

a .

■ Example In the wage/customer satisfaction example, can we reject the null hy-
pothesis that 𝛽 = 0 in favor of a two-sided alternative at significance level .001?
Since the sample size is n = 16 and R2 = .6876, the F-statistic is

(n − 2) R2

1 − R2
= 14 × .6876

1 − .6876
= 30.8177.

The F-statistic is also reported by the regression_inference.xlsx
workbook—see Figure 20.9.

We need to compare the F-statistic to the F-value F̄ 1,14
.001 . Using the dis-

tributions.xlsx workbook, or typing “=F.INV.RT(.001,1,14)” into
a blank cell in Excel, we find that F̄ 1,14

.001 = 17.143. Since 30.8177 > 17.143, we
reject the null hypothesis that 𝛽 = 0 in favor of the two-sided alternative.



Trim Size: 7.5in x 9.25in Sandholm ch20.tex V1 - 10/05/2018 3:40pm Page 43�

� �

�

20.6 Analysis of Residuals, R2, and F Tests 43

In this example, the F-statistic was far larger than the F-value specified by
the hypothesis test, even with a demanding choice of significance level. This is a
common occurrence in simple regression. While we may have only a rough sense
of the value of 𝛽 before we draw our sample, we often have little doubt that 𝛽 is
not near zero, and the results of the F test will reflect this. ■

In Appendix 20.A.6, we provide two different derivations of the fact (20.26)
that underlies the F test. The first derivation shows that statement (20.26) is equiv-
alent to statement (20.19) about the distribution of the t-statistic (B − 𝛽)∕SB in the
case where 𝛽 = 0. Put differently, the F test above amounts to a different way of
writing the two-tailed t test for 𝛽 = 0 from Section 20.5.2. In the second derivation,
we obtain (20.26) from properties of the sum-of-squares equation (20.24).

Since the F test is equivalent to the t test in the present context, introducing
the F test here wasn’t strictly necessary. We introduced it anyway because ver-
sions of the F test are basic tools for inference in more complicated econometric
and statistical settings. For instance, F tests are a basic inference tool for multiple
regression, where one uses multiple explanatory variables as the basis for predic-
tions about the y variable (see Section 20.7.3). They are also key tools in analysis
of variance (ANOVA), where they are used to test for differences in means across
subpopulations defined in terms of one or more characteristics. F tests in these
settings are not equivalent to t tests, but they can be derived from properties of
suitable sum-of-squares equations.

20.6.3 What happens without normality? The robustness
of the F-statistic*

Equation (20.26) states that under the assumptions of the classical normal regres-
sion model with 𝛽 = 0, the F-statistic (n − 2) R2

1−R2 follows an F distribution. This
fact allows us to use the F-statistic to test the zero-slope null hypothesis against a
two-sided alternative.

For equation (20.26) to be true, the observations Yi must be normally dis-
tributed. What can be said if this is not the case? We describe two approaches to
this question, each of which parallels an approach to inference about an unknown
mean 𝜇X of i.i.d. trials {Xi}n

i=1 whose variance 𝜎2
X is unknown.21

To justify our small-sample inference procedures about 𝜇X for normally dis-
tributed trials, we used the fact that

(20.27)
X̄n − 𝜇X

1√
n
Sn

∼ t(n − 1) when each trial Xi is normally distributed.

If the trials are not normally distributed, then the t-statistic does not follow a t
distribution. Nevertheless, we argued in Section 17.4 that the t-statistic is robust

21Again, since the F test is equivalent to a t test in the present context, this discussion is not strictly
necessary, but the ideas here also apply in the more complicated settings mentioned above.
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in the following sense: If the distribution of each trial is not too far from normal—if
it is continuous, fairly symmetric, and not too skewed—then the the t-statistic will
still have an approximate t distribution even if the sample size is fairly small.

As it turns out, the F-statistic is also robust, though to a lesser degree than the
t-statistic. If the distribution of each trial is close to normal, then the F-statistic
will have an approximate F distribution for fairly small sample sizes.22 In such
cases, using the F test introduced above is justified.

Alternatively, we can consider large samples. In the i.i.d. trials setting, hav-
ing a large number of trials ensures that the sample mean X̄n is approximately
normally distributed (by the central limit theorem), and that the sample standard
deviation Sn provides a good approximation of the unknown variance 𝜎2

X . Using
these approximations, we argued in Chapter 15 that

(20.28)
X̄n − 𝜇X

1√
n
Sn

≈ N(0, 1) when the sample size n is large enough.

This fact is the basis for our inference procedures from Chapters 15 and 16.
A related large-sample approximation holds for the F-statistic in the context

of regression. In Appendix 20.A.6, we describe the logic behind the following fact:

The robustness of the F-statistic.
Suppose the assumptions of the classical regression model hold with 𝛽 = 0.

If the sample size n is large enough and there is non-negligible variation in the x
values, then

(20.29) (n − 2) R2

1 − R2
≈ 𝜒2(1).

Thus, if the number of trials is large enough, the statistic (n − 2) R2

1−R2 has an ap-
proximate 𝜒2(1) distribution even if the Yi are not normally distributed. This fact
can be used to construct large-sample tests of the zero-slope null hypothesis based
on the 𝜒2(1) distribution (see Exercise 20.6.8).

If we have a large i.i.d. sample from a distribution that is not too far from
normal, inference procedures based on either (20.27) or (20.28) can be applied.
The former will use t-values, the latter z-values. But as we saw in Chapter 17,
the t(n − 1) distribution converges to the N(0, 1) distribution as the sample size n
grows large. Thus in cases where either approach could be followed, procedures
based on t-values and z-values do not differ in an important way.

Likewise, if the sample size is large and the distribution of each Yi close to nor-
mal in our regression model, we have two options for inference procedures: start-
ing from (20.26) and using F-values, or starting from (20.29) and using 𝜒2-values.

22For analysis and references, see Mukhtar M. Ali and Subhash C. Sharma, “Robustness to
Nonnormality of Regression F-tests,” Journal of Econometrics 71 (1996), 175–205.
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But we saw in Chapter 17 that the F(1, n − 2) distribution converges to the 𝜒2(1)
distribution as the sample size n grows large. Thus when either approach could be
followed, procedures based on F-values and 𝜒2-values do not differ in an impor-
tant way.

While we have emphasized the similarities in how failures of normality affect
procedures based on t- and F-statistics, there are differences as well. Procedures
based on t-statistics are robust to larger departures from normality than ones based
on F-statistics. Also, as we discussed in Section 17.A.5, the convergence of t dis-
tributions to the standard normal distribution is faster than that of F distributions
to averaged 𝜒2 distributions. Thus compared to those based on t-statistics, proce-
dures using F-statistics should be employed with a bit more caution when trials
are not normal.

20.7 Regression and Causation

We conclude the chapter with a discussion of regression inference and causation,
complementing our discussions in Sections 18.4 and 19.5.3.

20.7.1 An alternate description of the classical regression
model

We defined the classical regression model using conditions (C1)–(C3).

The classical regression model.
(C1) Fixed x sampling: x1,… , xn are fixed and not all

identical;
Y1,… ,Yn are independent

random variables.
(C2) Linearity of conditional means: E(Yi) = 𝛼 + 𝛽xi.
(C3) Constant conditional variances: Var(Yi) = 𝜎2.

To begin our discussion, we observe that the classical regression model is also
commonly expressed in the following mathematically equivalent way:

Yi = 𝛼 + 𝛽xi + i, {i}n
i=1 independent,E(i) = 0,Var(i) = 𝜎2.(20.30)

In this description, the y observations are divided into two parts: their expected val-
ues 𝛼 + 𝛽xi, and mean-zero error terms (or disturbance terms), i.

23 The random
variable i = Yi − (𝛼 + 𝛽xi) represents the difference between the (random) obser-
vation Yi and its (nonrandom) expected value. This description of the model has
the advantage of describing the variation in the samples using independent random
variables with zero mean and a common variance, which can be convenient for
calculations (see Appendix 20.A.5).

23We use a capital  here to emphasize that i is a random variable.
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20.7.2 Causal regression models

Conditions (C1)–(C3) are mathematically equivalent to the formulation (20.30)
of the classical regression model. However, formulation (20.30) commonly serves
a dual role, not only describing the probability model for the sampling process,
but also providing a causal model, as introduced in Section 18.4. In other words,
formulation (20.30) is often used to indicate a causal assumption: namely, that
changes in the x variable cause changes in the y variable, regardless of how x it-
self is determined, and that there are no variables besides x that systematically
influence y, apart from ones explicitly held fixed in the sample. If this causal as-
sumption is correct, then the parameter 𝛽 represents the rate at which changes in
the x variable cause changes in the y variable.

If a regression model is used to model a controlled experiment, then a causal
interpretation of the model is usually correct. For instance, if an agricultural re-
searcher is varying the amount of fertilizer on distinct but identical plots of land,
being sure to keep all other key influences on crop yields equal, then it is reasonable
to conclude that the changes in the amount of fertilizer are causing the observed
differences in crop yields. In such cases, the value of 𝛽 is naturally interpreted as
the causal effect of the x variable on the y variable.

If a regression model is used to model an observational study—for instance,
if (20.30) is used to describe stratified sampling from a population (see Section
20.1.1), giving the model a causal interpretation is a bolder move. In this case,
the causal interpretation of (20.30) says that if we fix an individual’s x value, but
have no control over the individual’s other characteristics, then the individual’s y
value would be determined as in (20.30). This assumption often fails because of
confounding variables that have a causal relationship with the x variable, the y
variable, or both.24

■ Example
In the United States, refrigerators are labeled with a yellow EnergyGuide label

that describes monthly electricity costs.25 One would expect that refrigerators that
use less energy, and so are less expensive to run, would be sold at higher prices.
In fact, the opposite is true: refrigerators with low energy costs tend to have lower
prices than ones with high energy costs. Do lower energy costs reduce the prices
that consumers are willing to pay?

No. Both energy costs and prices depend on a third factor: size. Larger fridges
use more energy, but they also keep more food cold, and it is the latter quality that
consumers are willing to pay more for. If we look at refrigerators of a given size,
the ones that use less energy tend to cost more, not less. ■

24We discussed confounding variables previously in Sections 10.5 and 18.4, where further examples
can be found.
25See www.consumer.ftc.gov/articles/0072-shopping-home-appliances-use-energyguide-label.
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■ Example We are analyzing the performances of sales staff in medical equip-
ment companies. Regressing sales volumes on the sellers’ levels of education, we
find that an additional year of education is associated with an additional $7000 in
annual sales. Should we conclude that the skills obtained during one more year in
school are the cause of the $7000 increase in expected productivity?

Probably not. It seems likely that both sales volume and educational attain-
ment are commonly influenced by other factors. For instance, intelligence and
drive are likely to have direct effects on both educational attainment and career
success. If we do not explicitly account for these factors in our analysis, then their
effects on sales volume will show up in our regression in the only way they can: as
part of the association between educational attainment and sales volume. Because
of this omitted variable bias, only a portion of the association between schooling
and sales volume appearing in our regression warrants a causal interpretation. ■

For better or worse, published research often presents models in the form
(20.30) without being explicit about whether a causal interpretation is intended.
As we discussed in Section 18.4, the only way to justify a causal interpretation of
a statistical analysis is by way of causal assumptions. If researchers give the anal-
ysis of an observational study a causal interpretation, then they must be viewing
(20.30) as a causal model. In this case, you need to ask yourself whether the causal
model is convincing—in other words, whether it captures the main determinants
of the y values other than those explicitly held fixed in the sample. If this is not
the case, as in the examples above, then giving 𝛽 a causal interpretation is not
warranted.

20.7.3 Multiple regression

In observational studies, it is uncommon for a model with just one explanatory
variable to have a causal interpretation. Instead, a collection of distinct explanatory
variables (known as independent variables) are usually needed to capture the key
causal influences on the y variable (known as the dependent variable).

As an example, a regression probability model with k independent variables
can be written in the following form:

Yi = 𝛼 + 𝛽1x1i + 𝛽2x2i + · · · + 𝛽kxki + i,(20.31)

{i}n
i=1 independent,E(i) = 0,Var(i) = 𝜎2.

In performing statistical inference in this context, the central aim is to determine
the values of the parameters 𝛽1 through 𝛽k, which describe how changes in the in-
dependent variables are associated with changes in the dependent variable. If the
model can be given a causal interpretation—if all important influences on the de-
pendent variable are included in the collection of independent variables—then
each parameter 𝛽j can be interpreted as the causal effect of increasing the jth
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independent variable on the value of the dependent variable when the other
independent variables are held fixed.26

As you might expect, having to deal with more than two variables at a time
makes analyses of multiple regression models distinctly more complicated than
analyses of bivariate models, and large portions of econometrics textbooks are
devoted to the novelties that arise. Nevertheless, many of the main concepts arising
in multiple regression appear in a simple form in the bivariate models we have
studied here.

20.A Appendix

20.A.1 Analysis of the random sampling regression model

Section 20.1 introduced the classical and random sampling regression models.
The derivations of inference procedures in subsequent sections were for the clas-
sical model, but we claimed that these procedures work equally well under the
assumptions of the random sampling model. In this section, we explain why.

First, we present the random regression model once again.27

The random sampling regression model.

(R1) Random sampling: (X1,Y1),… , (Xn,Yn) are
independent as i varies;

SD(Xi) > 0.
(R2) Linearity of conditional means: E(Yi|Xi = x) = 𝛼 + 𝛽x.
(R3) Constant conditional variances: Var(Yi|Xi = x) = 𝜎2.

The OLS estimators for the random regression model are the same as those
for the classical model, except from the fact that the x variable is now random.
Thus the sample mean and sample variance,

X̄ = 1
n

n∑
i=1

Xi and S 2
X = 1

n − 1

n∑
i=1

(Xi − X̄)2,

are random variables, as is the sample covariance

SXY = 1
n − 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ).

26In econometrics, the term structural equation is often used to describe probability models like
(20.31) when they are intended to have a causal interpretation.
27Here is a technicality we ignored the first time around. In writing down this model, we implicitly
assume that the Xi are discrete random variables. This ensures that the event {Xi = xi} has positive
probability for the realizations xi that can actually occur, so that conditional probabilities that
condition on this event make sense. Fortunately, nothing besides some technicalities changes if the Xi
are continuous.
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The formulas for the OLS estimators are the same as before, except that each x
becomes an X:

B =
SXY

S2
X

=
∑n

i=1(Xi − X̄)(Yi − Ȳ)∑n
i=1(Xi − X̄)2

and A = Ȳ − BX̄.

We now explain why the random sampling regression model is more difficult
to analyze than the classical model, and how the difficulty is resolved. We focus
on the properties of the OLS slope estimator B.

Equation (20.3) showed that in the classical regression model, B is a linear
function of the random variables {Yi}n

i=1:

(20.3) B =
n∑

i=1

(
xi − x̄∑n

j=1(xj − x̄)2

)
Yi.

This fact made it easy to establish that B has mean E(B) = 𝛽 and varianceVar(B) =
𝜎2∕((n − 1)s 2

x ) using our knowledge of the traits of Yi and the fact that different
Yi are independent random variables (see Appendix 20.A.3 for the derivations).
Likewise, under the additional assumption that the Yi are normally distributed,
this linearity property ensured that B is normally distributed as well.

With random sampling, the x values are random variables, so the correspond-
ing expression for B is

B =
n∑

i=1

(
Xi − X̄∑n

j=1(Xj − X̄)2

)
Yi.

While this is still a linear function of the Yi, it is a nonlinear function of the Xi
and Yi in combination. Since the Xi and Yi are unlikely to be independent—after
all, the point of regression analysis is to look for relationships between the x and
y variables—even computing the mean of B seems a daunting task.

The trick that gets us around this difficulty is to condition on the realization of
the x values in the sample. If we condition on the event that X1 = x1,… ,Xn = xn,
then B is again described by (20.3), and so is an unbiased estimator of 𝛽.

E(B|X1 = x1,… ,Xn = xn) = 𝛽.

But the unconditional expected value of B is just an average of these conditional
expected values.28 Since the latter all equal 𝛽, the former must equal 𝛽 as well:
E(B) = 𝛽.

This conditioning argument shows that even in the random sampling regres-
sion model, B is an unbiased estimator of 𝛽. Versions of this reasoning can be used
to show that all of the inference procedures for the classical model apply equally
well to the random sampling model. For the case of the normal random sampling
regression model, see Exercise 20.M.9.

28This follows from the law of iterated expectation: see Exercise 20.M.8.
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20.A.2 The unstructured regression model

Both the classical and random sampling regression models make strong
assumptions about the relationship between x and y values in the population: sub-
population means depend linearly on the subpopulation x, and the subpopulation
variances are all equal. While these assumptions are reasonable approximations in
some applications, they may be violated in others. Fortunately, as we now explain,
it is possible to use regression for inference without making any assumptions
about the population whatsoever.

Consider the following regression probability model for inference about a
population.

The unstructured regression model.

Independent random sampling: (X1,Y1),… , (Xn,Yn) are independent
as i varies.

The aim is to estimate the population regression line y = 𝛼 + 𝛽x, where 𝛽 = 𝜎xy

𝜎2
x

and 𝛼 = 𝜇y − 𝛽𝜇x.

In the unstructured regression model, we make no assumptions at all about
the joint distribution of x and y values in the population. Our goal in performing
statistical inference is to estimate the regression line for the population. The re-
gression line may not agree with the conditional expectation function, but as we
argued in Chapter 19, it is still an important descriptive statistic in its own right.

The OLS estimators for the unstructured model are defined exactly as in the
random sampling model from the previous section:

B =
SXY

S2
X

and A = Ȳ − BX̄.

Are B and A still good estimators of 𝛽 and 𝛼? Since the unstructured model imposes
no assumptions on the population, it is too much to ask that B and A be unbiased.
However, they can be shown to be consistent estimators of 𝛽 and 𝛼. That is, when
the sample size is large, B and A are very likely to be very close to 𝛽 and 𝛼.29

What about hypothesis tests and confidence intervals for 𝛽? Advanced
techniques can be used to show that the estimator B is approximately normally
distributed when the sample size is large. To use this fact to define inference
procedures, we need to be able to estimate the variance of B. This is a more
complicated matter than in our earlier models: there is nothing like the common
conditional variance 𝜎2 in the unstructured regression model, so the expression

29Here’s why: We know (from Section 14.4) that the sample variance S2
X is a consistent estimator of

the population covariance 𝜎2
x , and it should not be hard to believe that the same connection holds

between SXY and 𝜎xy. Then Slutsky’s theorem (Appendix 14.B) implies that the ratio B = SXY∕S2
X is

a consistent estimator of the ratio 𝛽 = 𝜎xy∕𝜎2
x .
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for Var(B) is not as simple as before. Nevertheless, consistent estimators of
Var(B) are available, and they are very widely used in economic research.30

To sum up, the use of regression for inference about a population really
doesn’t depend on imposing strong assumptions about the population under study,
although the weaker assumptions change both the interpretations and details of
the inference procedures.

20.A.3 Computation of the mean and variance of B

To compute the mean and variance of B, we will use the formula

(20.3) B =
n∑

i=1

(
xi − x̄∑n

j=1(xj − x̄)2

)
Yi,

that expresses B as a linear function of the random variables Yi, along with the
formulas for linear functions of random variables from Chapters 3 and 4 and
assumptions (C1)–(C3) of the classical regression model. Throughout this calcu-
lation, we use the fact that the xi are not random variables, but rather fixed numbers
specified in advance by the researcher.

We start with the computation of E(B). Our basic facts about expected values
show that

E(B) = E

(
n∑

i=1

xi − x̄∑n
j=1(xj − x̄)2

Yi

)

=
n∑

i=1

E

(
xi − x̄∑n

j=1(xj − x̄)2
Yi

)

=
n∑

i=1

xi − x̄∑n
j=1(xj − x̄)2

E(Yi).

Next, using the fact that E(Yi) = 𝛼 + 𝛽xi (assumption (C2)) shows that

(20.32) E(B) =
n∑

i=1

xi − x̄∑n
j=1(xj − x̄)2

(𝛼 + 𝛽xi).

To simplify this expression, we use the fact that
∑n

i=1(xi − x̄) = 0 twice, once to
eliminate 𝛼, and once to introduce 𝛽x̄. We obtain

E(B) =
n∑

i=1

xi − x̄∑n
j=1(xj − x̄)2

(𝛽xi − 𝛽x̄)(20.33)

30Consistent estimators of Var(B) for this unstructured setting are known as heteroskedasticity-
robust standard errors or White standard errors
.
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= 𝛽

n∑
i=1

(xi − x̄)2∑n
j=1(xj − x̄)2

= 𝛽.

To compute Var(B), use our formulas for variances of linear functions of ran-
dom variables, along with the assumptions that the Yi are independent (assumption
(C1)) and have common variance 𝜎2 (assumption (C3)):

Var(B) = Var

(
n∑

i=1

xi − x̄∑n
j=1(xj − x̄)2

Yi

)

=
n∑

i=1

Var

(
xi − x̄∑n

j=1(xj − x̄)2
Yi

)

=
n∑

i=1

(
xi − x̄∑n

j=1(xj − x̄)2

)2

Var(Yi)

=
∑n

i=1(xi − x̄)2(∑n
j=1(xj − x̄)2

)2
𝜎2

= 1∑n
i=1(xi − x̄)2

𝜎2

= 𝜎2

(n − 1)s 2
x

.

20.A.4 Proof of the Gauss-Markov theorem

In this appendix, we prove that under the assumptions of the classical regres-
sion model, the OLS estimator B has the lowest variance of all unbiased linear
estimators of 𝛽. The proofs of the other claims of the theorem are similar—see
Exercise 20.M.4.

This proof also uses the formula

(20.3) B =
n∑

i=1

(
xi − x̄∑n

j=1(xj − x̄)2

)
Yi,

expressing B as a linear function of the random variables Yi. Rearranging this
slightly shows that

(20.34) B =
n∑

i=1

(p + qxi)Yi, where p = −x̄∑n
j=1(xj − x̄)2

and q = 1∑n
j=1(xj − x̄)2

.

In words, the weight on Yi is the sum of two terms: a constant p (that does not
depend on i), and the value xi times a constant q (a constant that also does not
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depend on i). Put differently, the list of weights is a linear combination of a list of
1s and the list of x values. This is the key fact about the OLS estimator B used in
the proof, specifically in display (20.37).

Now suppose that B̃ is a different linear unbiased estimator of 𝛽. Our goal is to
show is that Var(B̃) > Var(B). To start, we define D = B̃ − B, so that B̃ = B + D.
Since B̃ and B are both linear, D is linear as well, meaning that we can write

(20.35) D =
n∑

i=1

diYi

for some choice of the constants di. Since B̃ is different from B, at least one di is
not zero.

Since B̃ and B are both unbiased, they both have mean 𝛽 regardless of the
values of 𝛼 and 𝛽. It follows that

E(D) = E(B̃ − B) = E(B̃) − E(B) = 0 − 0 = 0,

so D has mean zero regardless of the values of 𝛼 and 𝛽. Combining the two previous
equations, and using the fact that E(Yi) = 𝛼 + 𝛽xi (assumption (C2)), we see that

0 = E(D) = E

(
n∑

i=1

diYi

)
=

n∑
i=1

diE(Yi) =
n∑

i=1

di(𝛼 + 𝛽xi) = 𝛼

n∑
i=1

di + 𝛽

n∑
i=1

dixi.

The only way that this statement can be true regardless of the values of 𝛼 and 𝛽 is
if the following orthogonality conditions hold:

(20.36)
n∑

i=1

di = 0 and
n∑

i=1

dixi = 0.

(Recall from Section 19.2.3 that lists {ai}n
i=1 and {bi}n

i=1 are orthogonal if∑n
i=1 aibi = 0.)

We are now ready to compare the variances of B and B̃. To begin, note that

Var(B̃) = Var(B + D) = Var(B) + 2Cov(B,D) + Var(D).

To evaluate the covariance term, we use our formulas from Chapter 4, the facts that
the Yi are independent (assumption (C1)) with common variance 𝜎2 (assumption
(C3)), along with (20.34), (20.35), and (20.36):

Cov(B,D) = Cov

(
n∑

i=1

(p + qxi)Yi,

n∑
j=1

djYj

)
(20.37)

=
n∑

i=1

n∑
j=1

Cov
(
(p + qxi)Yi, djYj

)
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=
n∑

i=1

(p + qxi)diVar(Yi)

= 𝜎2

(
p

n∑
i=1

di + q
n∑

i=1

dixi

)
= 0.

In words, since the list of weights defining B is a linear combination of the list of
1s and the list of x values, and since both of the latter are orthogonal to the list
of weights defining D, it follows that the lists of weights defining B and D are
orthogonal to each other. This implies in turn that B and D are uncorrelated.

Furthermore, the independence of the Yj and the fact that at least one dj is not
zero implies that

Var(D) = Var

(
n∑

j=1

djYj

)
=

n∑
j=1

Var
(
djYj

)
=

n∑
j=1

d2
j Var(Yj) = 𝜎2

n∑
j=1

d2
j > 0.

Combining the last three displays allows us to conclude that

Var(B̃) = Var(B) + 0 + Var(D) > Var(B),

which is what we wanted to show.

20.A.5 Proof that the sample conditional variance is unbiased

As in (20.30), define the error term i = Yi − (𝛼 + 𝛽xi) to be the difference between
the ith y observation and its conditional mean. Then under the assumptions of the
classical regression model, {i}n

i=1 is a sequence of independent random variables
with mean E(i) = 0 and variance Var(i) = 𝜎2. Reviewing the argument from
Appendix 14.B shows that the sample variance S 2


= 1

n−1

∑n
i=1(i − ̄)2 has mean

E(S 2

) = 𝜎2. The novelty here is that this conclusion depends only on the indepen-

dence and common mean and variance of the i, and does not require them to be
identically distributed.

The sample regression residuals can be expressed as

Ui = Yi − (A + Bxi)

= i + (𝛼 + 𝛽xi) − (A + Bxi)

= i − (A − 𝛼) − (B − 𝛽)xi.(20.38)

Now, we know from our characterizations of the regression line from Chapter 19
that the sample regression residuals sum to 0. Therefore, summing (20.38) over i
and dividing by n yields

(20.39) 0 = ̄ − (A − 𝛼) − (B − 𝛽)x̄,
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where ̄ = 1
n

∑n
i=1 i denotes the sample mean of the sequence {i}n

i=1. Thus,
subtracting (20.39) from (20.38) yields

Ui = (i − ̄) − (B − 𝛽)(xi − x̄).

Taking the sum of squares of this equation yields

(20.40)
n∑

i=1

U2
i =

n∑
i=1

(i − ̄)2 + (B − 𝛽)2
n∑

i=1

(xi − x̄)2 − 2(B − 𝛽)
n∑

i=1

(i − ̄)(xi − x̄).

In order to evaluate the expected value of this sum of squares, we repeatedly
use the fact that

∑n
i=1(xi − x̄) = 0 along with the definitions of i and B to rewrite

the final term in (20.40):

(B − 𝛽)
n∑

i=1

(i − ̄)(xi − x̄) = (B − 𝛽)
n∑

i=1

i(xi − x̄)

= (B − 𝛽)
n∑

i=1

(Yi − 𝛽xi)(xi − x̄)

= (B − 𝛽)
n∑

i=1

(Yi − Ȳ − 𝛽(xi − x̄))(xi − x̄)

= (B − 𝛽)

(
n∑

i=1

(Yi − Ȳ)(xi − x̄) − 𝛽

n∑
i=1

(xi − x̄)2
)

= (B − 𝛽)

(
B

n∑
i=1

(xi − x̄)2 − 𝛽

n∑
i=1

(xi − x̄)2
)

= (B − 𝛽)2
n∑

i=1

(xi − x̄)2.

By substituting this into (20.40), and using the facts that E(S 2

) = 𝜎2 and Var(B) =

𝜎2∕
∑n

i=1(xi − x̄)2, we find that

E

(
n∑

i=1

U2
i

)
= E

(
n∑

i=1

(i − ̄)2
)

+ E

(
(B − 𝛽)2

n∑
i=1

(xi − x̄)2
)

− 2E

(
(B − 𝛽)2

n∑
i=1

(xi − x̄)2
)

= (n − 1)E(S 2

) + Var(B)

n∑
i=1

(xi − x̄)2 − 2Var(B)
n∑

i=1

(xi − x̄)2
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= (n − 1)𝜎2 + 𝜎2 − 2𝜎2

= (n − 2)𝜎2.

We therefore conclude that

E(S) = E

(
1

n − 2

n∑
i=1

U2
i

)
= 1

n − 2
E

(
n∑

i=1

U2
i

)
= 𝜎2.

20.A.6 Deriving the distribution of the F-statistic

To start, we give two derivations of the distribution of the F-statistic in the classical
normal regression model when 𝛽 = 0, namely

(20.26) (n − 2) R2

1 − R2
∼ F(1, n − 2).

We first derive it from the distribution of the t-statistic for inference about 𝛽 in this
model, namely

(20.19)
B − 𝛽

SB
∼ t(n − 2).

In Appendix 17.A (online), we saw that the square of a random variable with a t(d)
distribution has an F(1, d) distribution. Thus, assuming that 𝛽 = 0 and squaring the
previous equation yields

B2

S2
B

∼ F(1, n − 2).

Thus to establish (20.26) it is enough to show that

(20.41)
B2

S2
B

= (n − 2) R2

1 − R2
.

We now derive (20.41). The definition of the ith predicted value is Ŷi = A +
Bxi, and the definition of A implies that Ȳ = A + Bx̄. Therefore

Ŷi − Ȳ = (A + Bxi) − (A + Bx̄) = B(xi − x̄),

so taking sums of squares yields

n∑
i=1

(Ŷi − Ȳ)2 = B2
n∑

i=1

(xi − x̄)2.
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Using this equation and the definitions of S 2
B and R2, we obtain

B2

S2
B

= B2

S 2

(n − 1)s 2
x

=

∑n
i=1(Ŷi − Ȳ)2∑n
i=1(xi − x̄)2

1
n−2

∑n
i=1(Yi − Ŷi)2∑n

i=1(xi − x̄)2

= (n − 2)
∑n

i=1(Ŷi − Ȳ)2∑n
i=1(Yi − Ŷi)2

= (n − 2)

∑n
i=1(Ŷi − Ȳ)2∑n
i=1(Yi − Ȳ)2∑n
i=1(Yi − Ŷi)2∑n
i=1(Yi − Ȳ)2

= (n − 2) R2

1 − R2
.

One can also derive the distribution of the F-statistic from the following facts
about the sum-of-squares equation. Unlike the derivation above, this approach
generalizes to multiple regression.

Distributions of sums of squares in the classical normal regression
model if 𝜷 = 0.

Consider the sum-of-squares equation

(20.24)
n∑

i=1

(Yi − Ȳ)2 =
n∑

i=1

(Ŷi − Ȳ)2 +
n∑

i=1

(Yi − Ŷi)2.

Under the assumptions of the classical normal regression model, if 𝛽 = 0, then

(i) The two sums on the right-hand side of (20.24) are independent
random variables.

(ii) If we divide each of the three sums in (20.24) by 𝜎2, the resulting
expressions have 𝜒2(n − 1), 𝜒2(1), and 𝜒2(n − 2) distributions.

These facts about distributions of sums of squares are closely related to the deriva-
tion of the distribution of the t-statistic, which we discussed in Section 17.A.4.
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It follows from these facts and from the definition (17.A.3) of the F distribu-
tion that when 𝛽 = 0,

(20.42)

∑n
i=1(Ŷi − Ȳ)2

1
n−2

∑n
i=1(Yi − Ŷi)2

∼ F(1, n − 2).

Dividing the top and bottom of this fraction by
∑n

i=1(Yi − Ȳ)2 and then applying
the definition of R2 yields

(n − 2) R2

1 − R2
∼ F(1, n − 2).

Next, we argue that even without the normality assumption, if the sample size
n is large enough and there is nonnegligible variation in the x values, then when
𝛽 = 0, the F-statistic has an approximate 𝜒2(1) distribution. We start from the fact
that the F-statistic can be expressed as the left-hand side of (20.42). Since the
denominator of this expression is the sample conditional variance S 2, multiply-
ing the numerator and denominator of this expression by 1∕𝜎2 lets us express the
F-statistic as

(20.43)

1
𝜎2

∑n
i=1(Ŷi − Ȳ)2

1
𝜎2 S 2

.

We saw in Section 20.3 that S 2 is a consistent estimator of 𝜎2: as n grows
large, the denominator of (20.43) converges in probability to 1. This suggests (and
in fact implies, by a version of Slutsky’s theorem) that if the numerator of (20.43)
converges in distribution to a 𝜒2(1) random variable, then so does (20.43) as a
whole.

To evaluate the numerator of (20.43), we rewrite it as

1
𝜎2

n∑
i=1

(Ŷi − Ȳ)2 = 1
𝜎2

n∑
i=1

(A + Bxi − Ȳ)2

= 1
𝜎2

n∑
i=1

(Ȳ − Bx̄ + Bxi − Ȳ)2

=
∑n

i=1(xi − x̄)2

𝜎2
B2.(20.44)

We saw in Section 20.2 that the OLS estimator B is approximately normally dis-
tributed, with mean 𝛽 and variance 𝜎2∕

∑n
i=1(xi − x̄)2. Since 𝛽 = 0 by assumption,

we have

B ≈ N

(
0,

𝜎2∑n
i=1(xi − x̄)2

)
.
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Thus by the basic properties of normal random variables,

(20.45)

√∑n
i=1(xi − x̄)2

𝜎
B ≈ N(0, 1).

By definition, the square of a standard normal random variable is a 𝜒2(1)
random variable. This suggests (and in fact implies, by a version of the continuous
mapping theorem) that if we square the left-hand side of (20.45), which has an
approximately standard normal distribution, the result will have an approximate
𝜒2(1) distribution. But this square is (20.44). Thus the numerator of (20.43) has
an approximate 𝜒2(1) distribution, which is what we set out to show.

KEY TERMS AND CONCEPTS

classical regression model
(p. 2)

random sampling regression
model (p. 2)

fixed x sampling (p. 3)
random sampling (p. 3)
stratified sampling (p. 3)
subpopulation (p. 4)
linearity of conditional means

(p. 4)
conditional mean (p. 4)
constant conditional variances

(p. 5)
conditional variance (p. 6)
time series (p. 9)
serial correlation (p. 9)
ordinary least squares (OLS)

estimators (p. 11)
Gauss-Markov theorem (p. 16)

sample subpopulation mean
(p. 17)

sample conditional variance
(p. 18)

sample regression prediction
(p. 18)

sample regression residual
(p. 18)

degrees of freedom (p. 19)
standard error (p. 20, 21, 25)
population regressions vs.

sample regressions (p. 26)
classical normal regression

model (p. 29)
t-statistic (p. 31, 35)
prediction interval

(p. 36, 37)
sum-of-squares equation

(p. 40)

sample correlation coefficient
(p. 40)

squared sample correlation
coefficient (R2) (p. 40)

F test (p. 41)
F-statistic (p. 42)
F-value (p. 42)
error term (p. 45)
causal model (p. 46)
causal assumption (p. 46)
confounding variable

(p. 46)
omitted variable bias (p. 47)
independent variable (p. 47)
dependent variable (p. 47)
random sampling regression

model (p. 48)
unstructured regression model

(p. 50)

20.E Exercises

Data sets used in the exercises can be found in the ch20_data.xlsx work-
book. Unless otherwise indicated, data should be analyzed using the regres-
sion_inference.xlsx workbook.
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Section 20.1 exercises

Exercise 20.1.1. Bill’s scores (y) during each attempt at a popular online game
tend to be proportional to the amount of time the attempt lasts (x). While his scores
on short attempts are quite predictable, those on longer attempts fall in much wider
ranges. You will observe the durations and scores of Bill’s next 100 attempts.

a. Which sampling assumption is more apt here, (C1) or (R1)? Why?
b. Does the sample satisfy the distributional assumptions of the regression

model you indicated in part (a)? Explain.

Exercise 20.1.2. A firm’s weekly expenses include a fixed component and a
component that is proportional to the number of units it sells. The variability
of weekly expenses is consistent across the sales figures that actually arise. We
plan to take a stratified sample of this firm’s weekly unit sales (x) and weekly
expenses (y).

a. Which sampling assumption is more apt here, (C1) or (R1)? Why?
b. Does the sample satisfy the distributional assumptions of the regression

model you indicated in part (a)? Explain.

Exercise 20.1.3. A global consulting firm hires thousands of new employees each
year. The human resources department strictly limits the salary range of new hires
in order to avoid setting costly precedents. Employees who remain with the firm
for many years eventually get larger raises each year.

a. Would you expect population data on years of experience (x) and
compensation (y) for this firm to satisfy the assumptions of the classical
regression model? Explain.

b. Sketch a scatterplot similar to Figures 20.1–20.3 that captures the main
features you expect the population data to have.

Exercise 20.1.4. Attendance at San Francisco Giants baseball games varies with
weather conditions. The spring and fall include a mix of frigid and warm days,
while the summer brings both warm and unpleasantly hot days. On pleasant days,
the Giants nearly always fill every seat.

a. Would you expect data on temperature (x) and attendance (y) at Giants
games to satisfy the assumptions of the classical regression model?
Explain.

b. Draw a scatterplot similar to Figures 20.1–20.3 that captures the main
features you expect the data to have.

Section 20.2 exercises

Exercise 20.2.1. Let {(xi,Yi)}n
i=1 represent an experiment that satisfies the

assumptions of the classical regression model with n = 70, x̄ = 10.5, s2
x = 2.2,

𝛼 = .5, 𝛽 = .8, and 𝜎2 = 1.6.
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a. Compute the means, variances, and covariance of A and B.
b. Compute the mean and variance of A + Bx for an arbitrary value of x.
c. What is the approximate probability that B > 1?
d. What is the approximate probability that A + 10.5B > 9?

Exercise 20.2.2. Let {(xi,Yi)}n
i=1 be a stratified sample that satisfies the assump-

tions of the classical regression model with n = 100, x̄ = 2, s2
x = 0.75, 𝛼 = 2,

𝛽 = .20, and 𝜎2 = 1.5.
a. Compute the means, variances, and covariance of A and B.
b. Compute the mean and variance of A + Bx for an arbitrary value of x.
c. Evaluate P(A < 1.5) and P(B < 0).

Exercise 20.2.3. Continue with the specification of the classical regression model
from Exercise 20.2.2.

a. Suppose that x = 2 occurs n2 = 18 times in the list {xi}n
i=1 of x values

used in the sample. Compute the variance of the sample subpopulation
mean

Ȳ|x=2 = 1
n2

∑
i∶ xi=2

Yi.

b. Compute the variance of A + 2B.
c. Which is larger, Var(Ȳ|x=2) or Var(A + 2B)?
d. Could you have answered part (c) without doing any computations? If

so, how?

Section 20.3 exercises
Exercise 20.3.1. Drivers for a taxi company have flexible schedules. Their income
is the difference between the percentage of the fares they get to keep, minus the
cost of gasoline, which they must pay themselves. Some of the cost of gasoline is
due to the journeys to and from the driver’s home, which must be paid regardless
of the shift length. The drivers worksheet presents the shift lengths (x) and
incomes (y) from a random sample of 70 shifts. Assume that the assumptions of
the random sampling regression model hold.

a. Provide interpretations of 𝛼, 𝛽, and 𝜎2 in this example.
b. Report the OLS estimators A and B and the sample conditional variance

S2. Interpret each in the context of this example.
c. Estimate the expected income from a 10-hour shift.

Exercise 20.3.2. Crab fishermen in Alaska endure very dangerous working
conditions to catch delicious Alaskan king crabs. The crabs.xlsx worksheet
contains sample data on crew size (x) and catch (y, in tons) for 55 crabbing trips
during the previous season. Assume that the assumptions of the random sampling
regression model hold.
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a. Report the sample regression line and the sample conditional variance.
b. Estimate the mean catch size for a ship with 8 crew members.
c. Suppose we are able to obtain data from a large sample of crabbing trips.

What can we say about the OLS estimators and the sample conditional
variance in this case?

Exercise 20.3.3. A pediatrician is running a study on sleep deprivation in children
and its impact on cognitive skills. Seventy-two families with 13-year-olds agree to
participate in the study. For each child, the pediatrician learns the average number
of hours the child slept during the past week (x), as well as the child’s score on a
test of concentration and short-term memory (y, on a 100-point scale). Her data
can be found in the sleepworksheet. Assume that the assumptions of the random
sampling regression model hold.

a. Report the sample regression line and the sample conditional variance.
b. Estimate the expected test score of a student who sleeps 8.5 hours per

night.
c. Suppose that the pediatrician is interested in the relationship between

sleep and cognitive skills among all U.S. 13-year-olds. Will her
experiment provide unbiased estimates of the slope and intercept of the
true regression line for this population? Why or why not?

Exercise 20.3.4. Podcasts can make money from advertising if they can attract
a large enough listener base. The podcast worksheet contains data reports the
downloads per week (x, in thousands) and advertising revenues (y, in thousands of
dollars per week) for 125 randomly selected podcasts. Assume that the assump-
tions of the random sampling regression model hold.

a. Report the sample regression line and the sample conditional variance.
b. Estimate the expected revenue of a podcast with 40,000 weekly

downloads.

Exercise 20.3.5. A company is evaluating the effect of their employees’ Internet
use on productivity. It gathers data, reported in the productivity worksheet,
on weekly personal Internet use (x, in minutes) and sales volume (y, in thousands
of dollars) for 57 employees in the sales department. Assume that the assumptions
of the random sampling regression model hold.

a. Report the sample regression line and the sample conditional variance.
b. Estimate the expected sales volume of an employee who uses the

Internet for 2.5 hours per week.

Exercise 20.3.6. A consumer research group wants to estimate the relationship be-
tween miles driven (x) and sales price (y, in dollars) for Toyota Corollas that are
4–6 years old. Data on mileage and sales price from a random sample of 80 trans-
actions can be found in the used_carsworksheet. Assume that the assumptions
of the random sampling regression model hold.
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a. Report the sample regression line and the sample conditional variance.
b. Estimate the expected sales price of a Corolla that has been driven

80,000 miles.
c. Estimate the decline in expected sales price from driving the car an

additional 300 miles.

Exercise 20.3.7. Suppose that the assumptions of the classical regression model
hold, and that 𝛼 and 𝛽 are known. Show that

V 2 = 1
n

n∑
i=1

(Yi − (𝛼 + 𝛽xi))2

is an unbiased estimator of the conditional variance 𝜎2.

Section 20.4 exercises
Exercise 20.4.1. A transportation engineer is investigating the relationship
between driving speeds and traffic fatalities. Looking at a stratified sample of
221 of stretches of U.S. highway, he obtains data on the average driving speed
(x, in miles per hour) and the number of fatalities per billion miles driven (y). He
obtains the following descriptive statistics and estimates:

x̄ = 57.32 A = 277.55

s2
x = 77.83 B = .4880 S2 = 7128.

Assume that the sample satisfies the assumptions of the classical regression model.
a. What are the interpretations of 𝛽 and 𝜎2 in this scenario?
b. Give a .95 interval estimate for 𝛽. Then interpret both B and the interval

estimate.
c. Compute the standard error of SA+Bx when x = 55 and when x = 75.

Explain why these standard errors differ in the way that they do.
d. Can you reject the null hypothesis that 𝛼 + 75𝛽 equals 300 in favor of the

alternative that it is larger at a 5% significance level? What about the null
hypothesis that 𝛼 + 75𝛽 equals 290?

Exercise 20.4.2. An environmental economist is studying the relationship be-
tween temperature and home heating costs in Madison. Each member of his
sample is a pair consisting of a nonsummer month and a house of between 2000
and 2200 square feet that is gas heated. She obtains a stratified sample of size 85,
obtaining the average temperature (x, in degrees Fahrenheit) and heating costs (y,
in dollars) for each member of the sample. Her descriptive statistics and estimates
are as follows:

x̄ = 38.02 A = 178.32

s2
x = 96.33 B = −2.393 S2 = 27.77.
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Assume that the sample satisfies the assumptions of the classical regression model.
a. What are the interpretations of 𝛽 and 𝜎2 in this scenario?
b. Give a .95 interval estimate for 𝛽.
c. Using your answer to part (b), determine whether you can reject the null

hypothesis that 𝛽 = −2.50 in favor of the two-sided alternative at a 5%
significance level.

d. Provide a 90% interval estimate for the mean home heating cost during a
month in which the average temperature is 8∘F.

Exercise 20.4.3. Revisit Exercise 20.3.1, which considered shift lengths (x) and
incomes (y) of taxi drivers.

a. Provide an interpretation of the slope parameter 𝛽 for this example.
b. Construct a .95 confidence interval for 𝛽.
c. Can you reject the null hypothesis that the effect of an additional hour of

work on expected income is $10.00 in favor of the alternative that it is
more than $10.00 at a 5% significance level?

d. Provide a .95 confidence interval for the expected income from driving a
10-hour shift.

Exercise 20.4.4. Revisit Exercise 20.3.2, which analyzed crew size (x) and catch
(y, in tons) of crab-fishing boats.

a. Provide an interpretation of the slope parameter 𝛽 for this example.
b. Using a 90% significance level, test the null hypothesis that the expected

effect of an extra crew member on the catch is at least 3 tons against the
alternative that the expected effect is smaller than 3 tons.

c. Provide a .99 confidence interval for the expected catch of a boat with
8 crewmen.

d. The threshold for profitability for a boat with an eight-man crew is a
catch of 27 tons. Can you establish that the expected catch of such a crew
is more than 27 tons at a 5% significance level?

Exercise 20.4.5. Revisit Exercise 20.3.3, which studied average number of sleep
hours (x) and test scores (y) of 13-year-olds.

a. Provide an interpretation of 𝛽 for this example.
b. Using a 99% confidence level, can you reject the null hypothesis that 𝛽 is

at most 2.5 in favor of the alternative that it is larger than 2.5?
c. Construct a 95% confidence interval for the expected test score of a

student who sleeps 8.5 hours per night.

Exercise 20.4.6. Revisit Exercise 20.3.4, which considered downloads per week
(x, in thousands) and advertising revenues (y in thousands of dollars per week) of
podcasts.

a. Provide a .95 confidence interval for the average revenue of a podcast
with 120,000 weekly downloads.
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b. Provide a .95 confidence interval for the average revenue of a podcast
with 240,000 weekly downloads.

c. Explain in words why the widths of these intervals differ in the way that
they do.

Exercise 20.4.7. Revisit Exercise 20.3.5, which considered weekly personal In-
ternet use (x, in minutes) and sales volume (y, in thousands of dollars) of sales
employees.

a. Test the null hypothesis that 𝛽 = 0 against the alternative that 𝛽 < 0 at a
5% significance level.

b. Provide a .95 confidence interval for the expected sales of an employee
who spends 4 hours per week on personal Internet use.

c. Provide a .95 confidence interval for the expected sales of an employee
who spends 6 hours per week on personal Internet use.

Exercise 20.4.8. Revisit Exercise 20.3.6, which looked at miles driven (x) and
sales price (y, in dollars) of late-model Toyota Corollas.

a. Test the null hypothesis that 𝛽 ≥ −.07 against the alternative hypothesis
that 𝛽 < −.07 at a 5% significance level.

b. Provide a .95 confidence interval for the expected price of a Corolla with
60,000 miles on it.

c. Provide a .95 confidence interval for the expected price of a Corolla with
120,000 miles on it.

d. Explain in words why the widths of these intervals differ in the way that
they do.

Exercise 20.4.9. Following the logic used in Chapter 15, derive the probability
statement (20.12) that describes the defining property of the interval estimator
for B.

Exercise 20.4.10. Following the logic used in Chapter 16, derive the probability
statement (20.17) that provides the critical value for a one-tailed hypothesis test
about the conditional mean A + Bx.

Exercise 20.4.11. A researcher painstakingly collects data in each of the 55
African countries on the average daily protein intake of pregnant women (x) and
the average birthweight of children (y). He reports that the positive relationship
he finds between these two variables is statistically significant at a 1% level.
Knowing nothing else about his data, can you identify any problems with his
claim? Discuss.

Section 20.5 exercises
Exercise 20.5.1. Suppose that {(xi,Yi)}n

i=1 represents an experiment that satisfies
the assumptions of the classical normal regression model with 𝛼 = 10, 𝛽 = 7, and
𝜎2 = 9. Also, suppose that x1 = 8 and x2 = 11.
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a. What is P(Y1 ≥ 70)?
b. What is P(Y2 ≤ 80)?
c. What is P(Y1 ≥ 70 and Y2 ≤ 80)?

Exercise 20.5.2. Suppose that {(xi,Yi)}n
i=1 represents a stratified sample that sat-

isfies the assumptions of the classical normal regression model with 𝛼 = 110,
𝛽 = −6, and 𝜎2 = 16. Also, suppose that x1 = 12 and x2 = 16.

a. What is P(Y1 ≥ 40)?
b. What is P(Y2 ≥ 20)?
c. What is P( 1

2
(Y1 + Y2) ≥ 30)?

Exercise 20.5.3. Let {(xi,Yi)}n
i=1 represent an experiment that satisfies the as-

sumptions of the classical normal regression model with n = 10, x̄ = 45, s2
x = 60,

𝛼 = 60, 𝛽 = −.35, and 𝜎2 = 40.
a. Compute P(B < .25).
b. Compute P(A + 90B < 25).

Exercise 20.5.4. Suppose that stratified sample of size 5 satisfies the assumptions
of the classical normal regression model. Knowing only this, is it possible to com-
pute P((B − 𝛽)∕SB > 2)? If so, compute it.

Exercise 20.5.5. A maker of exclusive collectible dolls is evaluating the relation-
ship between the amount of time she spends creating a doll (x, in days) and the
sales price of the doll at auction (y, in dollars), given the following data for her
previous 12 dolls:

x̄ = 9.8 A = 890

s2
x = 6.3 B = 283 S2 = 7,562,500.

Assume that this experiment satisfies the assumptions of the classical normal re-
gression model.

a. Compute a 95% confidence interval for 𝛽.
b. Compute a 95% confidence interval for the expected sales price of a doll

that takes 100 hours to make.
c. Compute a 95% prediction interval for the sales price of the next doll she

spends 100 hours making.

Exercise 20.5.6. A researcher is trying to determine whether a particular chem-
ical’s presence in tap water increases cancer rates. She measures the chemical’s
concentration in tap water (x, in ppm (parts per million)) and the cancer rate (y, in
new cases per 1000 people during the past year) in 12 communities, all of which
draw tap water from different sources. This data is reported in the carcino-
gen workbook. Assume that the sample satisfies the assumptions of the random
sampling normal regression model.
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a. Report the sample regression line and the sample conditional variance.
b. Test the null hypothesis that 𝛽 = 0 against the alternative that 𝛽 > 0 at a

5% significance level level.
c. Provide a 90% prediction interval for the cancer rate in a community

where the concentration of the chemical in the tap water is 2.5 ppm.

Exercise 20.5.7. A consultant is estimating consumer water demand in Southern
California. He gathers data on price (x, in dollars per gallon) and per capita water
usage (y, in gallons per person per day) from 15 different towns, each of which
sets via legislative fiat the price that the water utility charges. This data is reported
in the water worksheet. Assume that the sample satisfies the assumptions of the
random sampling normal regression model.

a. Report the sample regression line and the sample conditional variance.
b. Provide a 95% confidence interval for the expected demand for water in

a town where the price of water is 2 cents per gallon.
c. Provide a 95% prediction interval for the demand for water in a

California town where the price of water is 2 cents per gallon.
d. Test the null hypothesis that 𝛽 = 0 against the alternative that 𝛽 < 0 at a

5% significance level.

Exercise 20.5.8. Consider the solar panel example from Section 20.5.2.
a. Suppose that the same values of B, S 2, and s 2

x were obtained with a
sample size of n = 30. Should the manager reject the null hypothesis?

b. What about if the sample size were n = 60?
c. What is the smallest sample size that would lead her to reject the null

hypothesis?

Exercise 20.5.9. In the solar panel example from Section 20.5.2, the manager con-
ducted an experiment by installing solar panels at 11 locations, and then used the
results to construct a .95 prediction interval for the electrical output at a new loca-
tion with insolation 6.10. The interval she found is [1.3381, 1.4709]. Let Y be the
electrical output of the new panel. At the time before she installs the new panel,
is the probability that Y lies in the interval [1.3381, 1.4709] equal to .95? If so,
explain why; if not, say what you can about this probability, and explain what the
probability .95 refers to.

Exercise 20.5.10. You plan to construct a .95 prediction interval using data from
a very large sample.

a. Give a simple approximate formula for the endpoints of this random
interval in terms of the estimators A, B, and S. (Hint: If n is very large,
then 1

n
is approximately zero.)

b. The prediction interval is very likely to be close to a fixed interval that
can be described in terms of the parameters of the model. What is this
fixed interval? Explain why this interval takes the form that it does.
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Section 20.6 exercises

Exercise 20.6.1. You plan to run a regression on a stratified sample of size 15 that
satisfies the assumptions of the classical normal regression model. You then intend
to test the null hypothesis that 𝛽 = 0 against the two-sided alternative. After taking
the sample, you obtain an R2 of .4582.

a. Can you reject the null hypothesis at a 5% significance level?
b. What is the lowest significance level at which the null hypothesis could

be rejected?

Exercise 20.6.2. You plan to run a regression on a stratified sample of size 10 that
satisfies the assumptions of the classical normal regression model, and to test the
null hypothesis that 𝛽 = 0 against the two-sided alternative.

a. What values of R2 would allow you to reject the null hypothesis at a 5%
significance level?

b. What values of R2 would allow you to reject the null hypothesis at a 1%
significance level?

Exercise 20.6.3. In Exercise 20.5.6, which considered the relation between the
concentration of a chemical in tap water (x, in parts per million) and the cancer
rate (y, in new cases per 1000 people during the past year), the sample size was
12, and it can be shown that R2 = .2069.

a. Can you reject the null hypothesis that 𝛽 = 0 in favor of the two-sided
alternative at a 5% significance level?

b. What is the lowest significance level at which the null hypothesis can be
rejected?

Exercise 20.6.4. Exercise 20.5.7 considered the relation between price (x, in dol-
lars per gallon) and per capita water usage (y, in gallons per person per day) in
California towns. The sample size was 15, and it can be shown that the sample
correlation is R = −0.5869. Consider testing the null hypothesis that 𝛽 = 0 against
the two-sided alternative. What is the lowest significance level at which the null
hypothesis can be rejected?

Exercise 20.6.5. Revisit Exercises 20.3.3 and 20.4.5, in which a pediatrician stud-
ied average number of sleep hours (x) and test scores (y) of 13-year-olds. The
researcher used a sample of size 72, and her regression resulted in an R2 of .3821.
Suppose that the conditional distributions of test scores are approximately normal.

a. Can she reject the null hypothesis that there is no relation between hours
of sleep and expected test scores in favor of the two-sided alternative at a
significance level of .001?

b. What is the lowest significance level at which the null hypothesis could
be rejected?
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Exercise 20.6.6. Carefully explain the differences between the sum of squares
equation (19.16) for population regressions Chapter 19 and its counterpart (20.24)
for regressions based on random samples.

Exercise 20.6.7. Express the F-statistic in terms of two of the sums of squares
from equation (20.24).

Exercise 20.6.8. Use fact (20.29) to show that in the classical regression model, if
the sample size n is large enough, we should reject the null hypothesis H0 ∶ 𝛽 = 0
in favor of the alternative H1 ∶ 𝛽 ≠ 0 at significance level a if

(n − 2) R2

1 − R2
> c1

1−a.

(Recall from Appendix 17.A (online) that the right-tail 𝜒2-value cd
1−a is defined

by P(C > cd
1−a) = a, where C ∼ 𝜒2(d).)

Section 20.7 exercises

Exercise 20.7.1. In a study of a sample of hospitals from mid-Atlantic states, a
regression of survival rates (the percentage of admitted patients who survived and
were discharged) on the number of physicians per patient returned a negative OLS
estimate of 𝛽. What confounding variable might account for this result?

Exercise 20.7.2. Recall Exercises 20.3.5 and 20.4.7, which considered weekly
personal Internet use (x, in minutes) and sales volume (y, in thousands of dollars)
of sales employees. The sample was assumed to satisfy the conditions of the
random sampling regression model. Is it reasonable to interpret 𝛽 as the expected
causal effect of Internet use on sales volume? Discuss.

Exercise 20.7.3. Recall Exercises 20.3.1 and 20.4.3, which considered shift
lengths (x) and incomes (y) for taxi drivers. The sample was assumed to satisfy
the conditions of the random sampling regression model.

a. Suppose that passengers hail taxis from the sidewalks, and that after a
driver drops off a passenger it is easy to find another fare. In this case, is
it reasonable to interpret 𝛽 as the causal effect of shift length on income?
Explain.

b. Now suppose that it is not always so easy to find passengers, and
experienced drivers are more skilled at locating them. Also, assume that
drivers who work long shifts tend to be long-time employees. In this
case, is it reasonable to interpret 𝛽 as the causal effect of shift length on
income? Explain.
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Exercise 20.7.4. Consider Exercise 20.5.7, which considered the relationship be-
tween the price of water (x, in dollars per gallon) and per capita water usage (y, in
gallons per person per day) in Southern California towns. The sample was assumed
to satisfy the conditions of the random sampling regression model.

a. In the original story, water was provided by a public utility with prices
set by legislative fiat. Is it reasonable to interpret 𝛽 as the causal effect of
the price of water on water usage? Explain.

b. Now suppose that the towns were instead served by several privately
owned water suppliers. Explain why in this case it may not be
appropriate to give 𝛽 a causal interpretation.

Chapter exercises

Exercise 20.C.1. An education researcher is studying the effect of study time on
eighth-graders’ test scores. He obtains a stratified sample of 120 children, record-
ing the amount of studying the week before the exam (x, in hours) and test scores
(y). His descriptive statistics and estimates are as follows:

X̄ = 2.5 A = 56.0

s2
X = .81 B = 7.5 S2 = 8.8.

Assume that the sample satisfies the assumptions of the classical regression model.
a. Interpret 𝛽.
b. Construct a .95 confidence interval for 𝛽.
c. Do you think the regression model has a causal interpretation? Explain.

Exercise 20.C.2. A fiction writer is trying to finish the much-anticipated next book
in his epic series and wants to know whether his coffee consumption is helping or
hurting his output. He varies his coffee intake (x, in cups) over the course of 20
working days according to a predetermined schedule, and records how many pages
he wrote each day (y). His descriptive statistics and estimates are as follows:

x̄ = 3.5 A = 7.22

s2
x = 1.21 B = .25 S2 = 2.7.

Assume that this experiment satisfies the assumptions of the classical normal re-
gression model.

a. Test the null hypothesis that 𝛽 = 0 against the alternative that 𝛽 > 0 at a
significance level of 5%.

b. Construct a .90 confidence interval for the writer’s expected output when
he drinks 5 cups of coffee.

c. Construct a .90 prediction interval for the writer’s output the next time he
drinks 5 cups of coffee.

d. Explain why your answers to parts (b) and (c) differ in the way that
they do.
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Exercise 20.C.3. A doctor is investigating the effect of exercise on cholesterol
levels among those whose cholesterol levels are high. She recruits 65 subjects
with high LDL (“bad”) cholesterol, who agree to monitor amount the time (x, in
hours) spent exercising over a 90-day period and to have their blood drawn to find
the change in cholesterol levels since the beginning of the period (y, in mg/dL
(milligrams per deciliter)). His descriptive statistics and estimates are as follows:

X̄ = 30 A = −1.20

S2
X = 9.77 B = −.075 S2 = 15.58.

Assume that the sample satisfies the assumptions of the random sampling normal
regression model.

a. Consider testing the null hypothesis that 𝛽 is greater than or equal to 0
against the alternative that it is less than 0. What is the P-value of the
sample?

b. Do you think 𝛽 has a causal interpretation? Explain.

Exercise 20.C.4. You work for a major soft drink maker and would like to better
understand the impact of advertising on your firm’s sales. To do so you perform an
experiment in 15 cities of similar sizes and with similar sales figures prior to the ex-
periment. You assign each city an advertising budget (x, in dollars) for one month,
and then record the sales figures (y, in dollars) for that city during the second half
of that month and the first half of the next month. The results of the experiment can
be found in the advertising worksheet. Assume that the experiment satisfies
the assumptions of the classical normal regression model.

a. Report the sample regression line and the sample conditional variance.
b. Consider testing the null hypothesis that 𝛽 = 0 against the alternative

hypothesis that 𝛽 > 0. What is the P-value of your sample?
c. Construct a 95% confidence interval for expected sales in a market in

which the brewer spends $20,000 on advertising.
d. Construct a 95% confidence interval for expected sales in a market in

which the brewer spends $15,000 on advertising.
e. Explain why the widths of the intervals from parts (c) and (d) differ in

the way that they do.

Exercise 20.C.5. The Department of Education wants to estimate the effect of
school district funding on the preparedness of high school graduates for college,
as measured by their average SAT scores. The schools.xls worksheet con-
tains data on per pupil funding (x, in dollars) and average SAT score (y) for 120
randomly chosen school districts in parts of the country where the SAT is the stan-
dard college entrance exam. Assume that the sample satisfies the assumptions of
the random sampling normal regression model.

a. Report the sample regression line and the sample conditional variance.
b. Consider testing the null hypothesis that 𝛽 = .02 against the alternative

hypothesis that 𝛽 > .02. What is the P-value of your sample? Can you
reject the null hypothesis at a 1% significance level?
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c. Construct a 95% confidence interval for the mean average SAT score in a
districts in which spending per pupil is $10,000.

d. Do you think that 𝛽 has a causal interpretation? Explain.

Exercise 20.C.6. The admissions office at a state university’s flagship campus is
determining how much weight to put on an applicant’s high school GPA in making
admissions decisions. It has collected the high school GPAs (x) and the college
first-year GPAs (y) of a random sample of 75 students who just completed their
first year at the university. The data is compiled in the GPAs worksheet. Assume
that the sample satisfies the assumptions of the random sampling regression model.

a. Report the sample regression line.
b. What is the mean first-year GPA of students in the sample whose high

school GPA was 4.0?
c. What is the best linear prediction of the mean first-year GPA of students

whose high school GPA was 4.0?
d. Explain in detail why your answers to parts (b) and (c) differ.
e. Construct a 95% confidence interval for the first-year GPA of a student

with a 4.0 high school GPA.
f. Construct a 95% confidence interval for the first-year GPA of a student

with a 3.0 high school GPA.
g. Explain why the widths of the intervals from parts (e) and (f) differ in the

way that they do.
h. Consider testing the null hypothesis that 𝛽 = 0 against the alternative

hypothesis that 𝛽 > 0. What is the P-value of the sample?

Exercise 20.C.7. A pesticide company is conducting research on the effectiveness
of its product at eliminating potato beetles. It has conducted an experiment by
stocking 10 greenhouses with 200 potato plants and 1000 potato beetles each,
varying the amount of pesticide solution (x, in liters) sprayed in each, and then
counting each greenhouse’s beetle population (y). The results of this experiment
are given in the potatoes worksheet. Assume that the experiment satisfies the
assumptions of the classical normal regression model.

a. Report A, B, and S2.
b. For what amount of pesticide solution would your point estimate of the

expected change in the beetle population equal zero?
c. Construct a 95% confidence interval for 𝛽.
d. Construct a 95% confidence interval for 𝛼. Give an interpretation of both

𝛼 and the confidence interval in the context of this example.

Exercise 20.C.8. A private toll bridge operator is considering raising the toll. To
estimate the demand curve, the operator performs an experiment, setting a different
toll each week over the course of 15 weeks. The results of this experiment are
presented in the tolls worksheet, first in their original units (prices in dollars,
and numbers of vehicles), and then after a logarithmic transformation. Assume that
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the assumptions of the classical normal regression model hold for the transformed
variables, logarithm of price and logarithm of number of vehicles.

a. Explain what the assumptions of the classical normal regression model
require in terms of the original (untransformed) variables.

b. Report the sample regression line and the sample conditional variance.
When a demand function is represented using logarithmically transformed vari-
ables, the absolute value of this function’s slope is the price elasticity of demand,
a measure of the sensitivity of quantity demanded to price charged.31 Demand is
said to be elastic when elasticity is greater than 1, and inelastic when elasticity is
less than 1.

Under the assumptions of our regression models, the line y = 𝛼 + 𝛽x is the
expected demand curve. Thus |𝛽| is the price elasticity of expected demand and is
assumed to be independent of the price charged.

c. Test the null hypothesis that expected demand has elasticity less than 1
against the alternative hypothesis that expected demand is elastic at a 5%
significance level.

d. What is the P-value of the sample for the hypothesis test in part (c)?

Mathematical exercises

Exercise 20.M.1. Consider the classical regression model.
a. Starting from the formula

B =
∑n

i=1(xi − x̄)(Yi − Ȳ)∑n
i=1(xi − x̄)2

,

show that B can be written in the linear form

B =
n∑

i=1

(
xi − x̄

(n − 1)s2
x

)
Yi.

(Hint: Use the fact that
∑n

i=1(xi − x̄) = 0 to eliminate Ȳ .)

31If p represents price, q quantity, and q = Q(p) the demand function, the elasticity of demand at
price p is defined as E(p) = | d

dp
Q(p) ⋅ p

Q(p) |. To establish the claim in the text for natural logarithms,

write p̃ ≡ ln p and q̃ ≡ ln q, and let q̃ = Q̃(p̃) be the demand function expressed in terms of the
transformed variables. Then Q̃(p̃) = ln Q(exp(p̃)) by definition, so the claim follows from
differentiation (via the chain rule) and substitution:

|||| d
dp̃

Q̃(p̃)
|||| = |||| 1

Q(exp(p̃))
⋅

d
dp

Q(exp(p̃)) ⋅ exp(p̃)
|||| = |||| 1

Q(p)
⋅

d
dp

Q(p) ⋅ p
|||| = E(p).

If the base 10 logarithm is used instead, a very similar calculation yields the same result.
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b. Starting from the formula A = Ȳ − Bx̄, and again using the fact that∑n
i=1(xi − x̄) = 0, show that A can be written in the linear form

A =
n∑

i=1

(
1
n
−

x̄ (xi − x̄)∑n
j=1(xj − x̄)2

)
Yi.

Exercise 20.M.2. Using the assumptions of the classical regression model and the
basic facts about means of linear functions of random variables, show that

a. E(Ȳ) = 𝛼 + 𝛽x̄.
b. E(A) = 𝛼.

Exercise 20.M.3. Consider the classical regression model
a. Show that

Var(A) = 𝜎2

(
1
n
+ x̄2∑n

i=1(xi − x̄)2

)
,

and hence that Var(A) = 𝜎2

n
+ x̄2𝜎2

B.
b. Show that

Cov(A,B) = − x̄∑n
i=1(xi − x̄)2

𝜎2.

and hence that Cov(A,B) = −x̄𝜎2
B.

(Hints: Start from the expressions for A and B as a linear functions of the Yi,
and use the formulas for variances and covariances of linear functions of random
variables from Chapters 3 and 4. During the calculation, use the fact that

∑n
i=1

(xi − x̄) = 0 as necessary to simplify the expressions you obtain.)

Exercise 20.M.4.
a. Prove that the OLS estimator A has a lower variance than any other

unbiased linear estimator of 𝛼. (Hint: Starting from the linear expression
for A in Section 20.2.2, show that A =

∑n
i=1(r + sxi)Yi for some choices

of r and s. Then follow the line of argument from Appendix 20.A.4.)
b. Prove that the OLS estimator A + Bx has a lower variance than any other

unbiased linear estimator of E(Y|x) = 𝛼 + 𝛽x.

Exercise 20.M.5.
a. Suppose that in the classical regression model, an experimenter chooses

x1 = 1, followed by xi = 0 for all i > 1. Show that in this case, the
variance of B does not approach 0 as the sample size grows large,
implying that B is not a consistent estimator of 𝛽 for this choice of x
values.

b. Find a specification of the xi for which A is not a consistent estimator
of 𝛼.
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Exercise 20.M.6. Show that in the random sampling regression model, the sample
covariance SXY = 1

n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ) is an unbiased estimator of the

covariance 𝜎xy = Cov(Xi,Yi). (Hint: Mimic the proof that the sample variance is
an unbiased estimator of the variance (Appendix 20.A.5.))

Exercise 20.M.7. Use the information about the distribution of Y − (A + Bx) from
equation (20.21) to show that

P(Y ∈ [(A + Bx) − d, (A + Bx) + d]) = 1 − c,

where d = zc∕2𝜎

√
1 + 1

n
+ (x − x̄)2

(n − 1)s2
x

.

This formula tells us the endpoints of the 1 − c prediction interval for Y when 𝜎 is
known.

Exercise 20.M.8. Show that in the random sampling regression model, since
E[B|X1 = x1,… ,Xn = xn] = 𝛽 for all realizations x1,… , xn, it must be that
E(B) = 𝛽. (Hint: Use the law of iterated expectation (Exercise 4.M.2).)

Exercise 20.M.9. Consider the random sampling normal regression model, which
is obtained from the random sampling regression model by adding the assumption
that Yi is normally distributed conditional on Xi = xi for any value of xi.

a. Show that conditional on the event {X1 = x1,… ,Xn = xn}, B is normally
distributed with mean 𝛽 and variance 𝜎2∕

∑n
i=1(xi − x̄)2. Thus B is not

normally distributed itself, but instead has what is known as a mixture
distribution composed from normal distributions.

b. Use part (a) to show that

ZB = B − 𝛽
𝜎√∑n

i=1(Xi − X̄)2

has a standard normal distribution. This result provides a basis for our
inference procedures for 𝛽 under random sampling. (Hint: Apply the law
of iterated expectation to an indicator random variable that equals 1
when ZB ≤ z, where z is an arbitrary number.)
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