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The chemist’s toolkit 1   Quantities and units

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physical quantity = numerical value × unit

It follows that units may be treated like algebraic quanti-
ties and may be multiplied, divided, and cancelled. Thus, 
the expression (physical quantity)/unit is the numerical 
value (a dimensionless quantity) of the measurement in the 
specified units. For instance, the mass m of an object could 
be reported as m = 2.5 kg or m/kg = 2.5. In this instance the 
unit of mass is 1 kg, but it is common to refer to the unit 
simply as kg (and likewise for other units). See Table A.1 in 
the Resource section of the text for a list of units.

Although it is good practice to use only SI units, there will 
be occasions where accepted practice is so deeply rooted that 
physical quantities are expressed using other, non-SI units. 
By international convention, all physical quantities are repre-
sented by oblique (sloping) letters (for instance, m for mass); 
units are given in roman (upright) letters (for instance m for 
metre).

Units may be modified by a prefix that denotes a factor 
of a power of 10. Among the most common SI prefixes are 

those listed in Table A.2 in the Resource section. Examples 
of the use of these prefixes are:

1 nm = 10−9 m     1 ps = 10−12 s    1 µmol = 10−6 mol

Powers of units apply to the prefix as well as the unit 
they modify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 
= 10−6 m3. Note that 1 cm3 does not mean 1 c(m3). When 
carrying out numerical calculations, it is usually safest to 
write out the numerical value of an observable in scientific 
notation (as n.nnn × 10n).

There are seven SI base units, which are listed in Table 
A.3 in the Resource section. All other physical quanti-
ties may be expressed as combinations of these base 
units. Molar concentration (more formally, but very rarely, 
amount of substance concentration) for example, which is 
an amount of substance divided by the volume it occupies, 
can be expressed using the derived units of mol dm−3 as 
a combination of the base units for amount of substance 
and length. A number of these derived combinations of 
units have special names and symbols. For example, force 
is reported in the derived unit newton, 1 N = 1 kg m s−2 (see 
Table A.4 in the Resource section of the text ).



The chemist’s toolkit 2   Properties of 
bulk matter

The state of a bulk sample of matter is defined by specify-
ing the values of various properties. Among them are:

The mass, m, a measure of the quantity of matter 
present (unit: kilogram, kg).
The volume, V, a measure of the quantity of space the 
sample occupies (unit: cubic metre, m3).
The amount of substance, n, a measure of the num-
ber of specified entities (atoms, molecules, or formula 
units) present (unit: mole, mol).

The amount of substance, n (colloquially, ‘the number 
of moles’), is a measure of the number of specified enti-
ties present in the sample. ‘Amount of substance’ is the 
official name of the quantity; it is commonly simplified to 
‘chemical amount’ or simply ‘amount’. A mole is currently 
defined as the number of carbon atoms in exactly 12 g 
of carbon-12. (In 2011 the decision was taken to replace 
this definition, but the change has not yet, in 2018, been 
implemented.) The number of entities per mole is called 
Avogadro’s constant, NA; the currently accepted value is 
6.022 × 1023 mol−1 (note that NA is a constant with units, 
not a pure number).

The molar mass of a substance, M (units: formally 
kg mol−1 but commonly g mol−1) is the mass per mole of its 
atoms, its molecules, or its formula units. The amount of 
substance of specified entities in a sample can readily be 
calculated from its mass, by noting that

=n m
M

� Amount of substance   (2.1)

A note on good practice  Be careful to distinguish atomic 
or molecular mass (the mass of a single atom or molecule; 
unit: kg) from molar mass (the mass per mole of atoms or 
molecules; units: kg mol−1). Relative molecular masses of 
atoms and molecules, Mr = m/mu, where m is the mass of 
the atom or molecule and mu is the atomic mass constant 
(see inside front cover of the text), are still widely called 
‘atomic weights’ and ‘molecular weights’ even though they 
are dimensionless quantities and not weights (‘weight’ is 
the gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p 
(unit: pascal, Pa; 1 Pa = 1 kg m−1 s−2), which is defined as the 
force, F, it is subjected to, divided by the area, A, to which 

that force is applied. Although the pascal is the SI unit 
of pressure, it is also common to express pressure in bar 
(1 bar = 105 Pa) or atmospheres (1 atm = 101 325 Pa exactly), 
both of which correspond to typical atmospheric pressure. 
Because many physical properties depend on the pressure 
acting on a sample, it is appropriate to select a certain 
value of the pressure to report their values. The standard 
pressure for reporting physical quantities is currently 
defined as p⦵ = 1 bar exactly.

To specify the state of a sample fully it is also necessary 
to give its temperature, T. The temperature is formally a 
property that determines in which direction energy will 
flow as heat when two samples are placed in contact through 
thermally conducting walls: energy flows from the sample 
with the higher temperature to the sample with the lower 
temperature. The symbol T is used to denote the thermo-
dynamic temperature which is an absolute scale with T = 0 
as the lowest point. Temperatures above T = 0 are then most 
commonly expressed by using the Kelvin scale, in which 
the gradations of temperature are expressed as multiples of 
the kelvin (K). The Kelvin scale is currently defined by set-
ting the triple point of water (the temperature at which ice, 
liquid water, and water vapour are in mutual equilibrium) 
at exactly 273.16 K (as for certain other units, a decision has 
been taken to revise this definition, but it has not yet, in 
2018, been implemented). The freezing point of water (the 
melting point of ice) at 1 atm is then found experimentally 
to lie 0.01 K below the triple point, so the freezing point of 
water is 273.15 K.

Suppose a sample is divided into smaller samples. If a 
property of the original sample has a value that is equal 
to the sum of its values in all the smaller samples (as mass 
would), then it is said to be extensive. Mass and volume 
are extensive properties. If a property retains the same 
value as in the original sample for all the smaller samples 
(as temperature would), then it is said to be intensive. In 
other words, the sum of the values of the smaller samples 
would not be equal to the value of the property of the ini-
tial sample. Temperature and pressure are intensive prop-
erties. Mass density, ρ = m/V, is also intensive because it 
would have the same value for all the smaller samples and 
the original sample. All molar properties, Xm = X/n, are 
intensive, whereas X and n are both extensive.



The chemist’s toolkit 3   Momentum 
and force

The speed, v, of a body is defined as the rate of change of 
position. The velocity, v, defines the direction of travel 
as well as the rate of motion, and particles travelling at 
the same speed but in different directions have different 
velocities. As shown in Sketch 3.1, the velocity can be 
depicted as an arrow in the direction of travel, its length 
being the speed v and its components vx, vy, and vz along 
three perpendicular axes. These components have a sign: 
vx = +5 m s−1, for instance, indicates that a body is moving 
in the positive x-direction, whereas vx = −5 m s−1 indicates 
that it is moving in the opposite direction. The length 
of the arrow (the speed) is related to the components by 
Pythagoras’ theorem: v2 = vx

2 + vy
2 + vz

2.

v   v   

vx vy

vz

length v⎛
⎨

⎝

Sketch 3.1

The concepts of classical mechanics are commonly 
expressed in terms of the linear momentum, p, which is 
defined as 

p mv= � Linear momentum 
[definition]

  (3.1)

Momentum also mirrors velocity in having a sense of 
direction; bodies of the same mass and moving at the 
same speed but in different directions have different linear 
momenta.

Acceleration, a, is the rate of change of velocity. A body 
accelerates if its speed changes. A body also accelerates if 
its speed remains unchanged but its direction of motion 
changes. According to Newton’s second law of motion, 
the acceleration of a body of mass m is proportional to the 
force, F, acting on it:

F am= � Force   (3.2)

Because mv is the linear momentum and a is the rate of 
change of velocity, ma is the rate of change of momentum. 
Therefore, an alternative statement of Newton’s second 
law is that the force is equal to the rate of change of 
momentum. Newton’s law indicates that the acceleration 
occurs in the same direction as the force acts. If, for an 
isolated system, no external force acts, then there is no 
acceleration. This statement is the law of conservation of 
momentum: that the momentum of a body is constant in 
the absence of a force acting on the body.



The chemist’s toolkit 4   Integration

Integration is concerned with the areas under curves. 
The integral of a function f(x), which is denoted 
f x x( )d∫  (the symbol ∫  is an elongated S denoting a sum), 

between the two values x = a and x = b is defined by imag-
ining the x-axis as divided into strips of width δx and 
evaluating the following sum:

f x x f x x( )d lim ( )
xa

b

i
i0∫ ∑= δ

δ →
	�  Integration 

[definition]
  (4.1)

As can be appreciated from Sketch 4.1, the integral is the 
area under the curve between the limits a and b. The func-
tion to be integrated is called the integrand. It is an aston-
ishing mathematical fact that the integral of a function 
is the inverse of the differential of that function. In other 
words, if differentiation of f is followed by integration of 
the resulting function, the result is the original function f 
(to within a constant).

The integral in the preceding equation with the limits 
specified is called a definite integral. If it is written with-
out the limits specified, it is called an indefinite integral. 
If the result of carrying out an indefinite integration is 
g(x) + C, where C is a constant, the following procedure is 
used to evaluate the corresponding definite integral:

I f x x g x C
b

a
g b C g a C

g b g a

( )d { ( ) } { ( ) } { ( ) }

( ) ( )

a

b

∫= = + = + − +

= −

Note that the constant of integration disappears. The defi-
nite and indefinite integrals encountered in this text are 
listed in the Resource section. They may also be calculated 
by using mathematical software.

x

f(x)

a b

δx

Sketch 4.1

Further information
When an indefinite integral is not in the form of one of 
those listed in the Resource section it is sometimes possible 
to transform it into one of these forms by using integration 
techniques such as:

Integration by parts. See The chemist’s toolkit 15.

Substitution.  Introduce a variable u related to the 
independent variable x (for example, an algebraic rela-
tion such as u = x2 – 1 or a trigonometric relation such 
as u = sin x ). Express the differential dx in terms of du 
(for these substitutions, du = 2x dx and du = cos x dx, 
respectively). Then transform the original integral 
written in terms of x into an integral in terms of u for 
which, in some cases, a standard form such as one of 
those listed in the Resource section can be used.

Brief illustration 4.1:  Integration by substitution

To evaluate the indefinite integral ∫cos2 x sin x dx make the 
substitution u = cos x. It follows that du/dx = –sin x, and 
therefore that sin x dx = –du. The integral is therefore

x x x u u u C x Ccos sin  d d cos2 2 1
3

3 1
3

3∫∫ = − = − + = − +

To evaluate the corresponding definite integral, convert the 
limits on x into limits on u. Thus, if the limits are x = 0 and 
x = π, the limits become u = cos 0 = 1 and u = cos π = –1:

x x x u u u Ccos sin  d d
0

π 2

1

1 2 1
3

3
1
1 2

3∫ ∫ { }= − = − + =
− −

A function may depend on more than one variable, in 
which case it may be necessary to integrate over all the 
variables, as in:

I f x y x y( , )d d
c

d

a

b

∫∫=

We (but not everyone) adopt the convention that a and b 
are the limits of the variable x and c and d are the limits 
for y (as depicted by the colours in this instance). This pro-
cedure is simple if the function is a product of functions 
of each variable and of the form f(x,y) = X(x)Y(y). In this 
case, the double integral is just a product of each integral:

I X x Y y x y X x x Y y y( ) ( )d d ( )d ( )d
c

d

a

b

c

d

a

b

∫∫∫∫= =

Brief illustration 4.2:  A double integral 

Double integrals of the form 

I x L y L x ysin (π / )sin (π / )d d
LL 2

1
2

200

21

∫∫=

occur in the discussion of the translational motion of a par-
ticle in two dimensions, where L1 and L2 are the maximum 
extents of travel along the x- and y-axes, respectively. To 
evaluate I write

Integral T.2 Integral T.2

I x L x y L ysin (π / )d sin (π / )d
L L2

10

2
20

1 2

� ��� ��� � ���� ����

∫ ∫=

{ } { }= − + − +

=

x x L
L C y y L

L C

L L

sin(2π / )
4π/

sin(2π / )
4π/

L L
1
2

1

1 0

1
2

2

2 0
1
4 1 2

1 2

Definite integral (4.2)



The chemist’s toolkit 5   Differentiation

Differentiation is concerned with the slopes of functions, 
such as the rate of change of a variable with time. The for-
mal definition of the derivative, df/dx, of a function f(x) is

f
x

f x x f x
x

d
d lim ( ) ( )

x 0
= +δ −

δδ →
� First derivative 

[definition]   (5.1)

As shown in Sketch 5.1, the derivative can be interpreted as 
the slope of the tangent to the graph of f(x) at a given value 
of x. A positive first derivative indicates that the function 
slopes upwards (as x increases), and a negative first deriva-
tive indicates the opposite. It is sometimes convenient to 
denote the first derivative as f ′(x). The second derivative, 
d2f/dx2, of a function is the derivative of the first derivative 
(here denoted f ′):

f
x

f x x f x
x

d
d

lim ( ) ( )
x

2

2 0
= ′ +δ − ′

δδ →
� Second derivative 

[definition]   (5.2)

It is sometimes convenient to denote the second derivative 
f′′. As shown in Sketch 5.2, the second derivative of a func-
tion can be interpreted as an indication of the sharpness of 
the curvature of the function. A positive second derivative 
indicates that the function is ∪ shaped, and a negative 
second derivative indicates that it is ∩ shaped. The second 
derivative is zero at a point of inflection, where the first 
derivative passes through zero but does not change sign.

The derivatives of some common functions are as follows:

x x nxd
d

n n 1= − 	

x ad
d e eax ax= 	

x ax a ax x ax a axd
d sin cos          dd cos sin     = = −

x ax x
d
d ln  1= 	

It follows from the definition of the derivative that a vari-
ety of combinations of functions can be differentiated by 
using the following rules:

x u u
x x

d
d ( ) d

d
d
dv
v+ = + 	

x u u x
u
x

d
d

d
d

d
dv

v
v= + 	

x
u u

x
u

x
d
d

1 d
d

d
d2v v v
v= − 	

Brief illustration 5.1:  Derivatives of a product of functions

To differentiate the function f = sin2 ax/x2 write

x
ax

x x
ax
x

ax
x

ax
x x

ax
x

ax
x x x ax ax x x

a
x

ax ax ax
x

d
d

sin d
d

sin sin 2 sin d
d

sin

2 sin 1 d
d sin sin d

d
1

2 sin cos sin  

2

2

2

2

3

{ }
( )( ) ( ) ( )

( )
= =

= +

= −








The function and this first derivative are plotted in Sketch 5.3. 

It is sometimes convenient to differentiate with respect to a 
function of x, rather than x itself. 

Brief illustration 5.2:  Differentiation with respect to a 
function

Suppose that 

= + +f x a b
x

c
x

( ) 2

where a, b, and c are constants and you need to evaluate 
df/d(1/x), rather than df/dx. To begin, let y = 1/x. Then f(y) 
= a + by + cy2 and 

= +f
y b cyd

d 2

Because y = 1/x, it follows that

= +
f
x b c

x
d

d(1/ )
2

dy/dx < 0

dy/dx > 0

dy/dx = 0

dy/dx = 0

x

y

Sketch 5.1

Sketch 5.3
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Sketch 5.2



The chemist’s toolkit 6   Work and energy

Work, w, is done when a body is moved against an oppos-
ing force. For an infinitesimal displacement through ds (a 
vector), the work done on the body is

dwbody = −F.ds	�  Work done on body 
[definition]   (6.1)

where F.ds is the ‘scalar product’ of the vectors F and ds:

F.ds = Fxdx + Fydy + Fzdz�  Scalar product 
[definition]   (6.2)

The energy lost as work by the system, dw, is the negative 
of the work done on the body, so

dw = F.ds	 Work done on system 
[definition]   (6.3)

For motion in one dimension, dw = Fxdx, with Fx < 0 (so Fx =  
−|Fx|) if it opposes the motion. The total work done along a 
path is the integral of this expression, allowing for the pos-
sibility that F changes in direction and magnitude at each 
point of the path. With force in newtons (N) and distance 
in metres, the units of work are joules (J), with

1 J = 1 N m = 1 kg m2 s−2

Energy is the capacity to do work. The SI unit of energy is the 
same as that of work, namely the joule. The rate of supply of 
energy is called the power (P), and is expressed in watts (W):

1 W = 1 J s−1

A particle may possess two kinds of energy, kinetic energy 
and potential energy. The kinetic energy, Ek, of a body is 
the energy the body possesses as a result of its motion. For 
a body of mass m travelling at a speed v, 

Ek = 12 mv2	 Kinetic energy 
[definition]   (6.4)

Because p = mv (The chemist’s toolkit 3), where p is the 
magnitude of the linear momentum, it follows that 

E p
m2k

2

= 	 Kinetic energy 
[definition]

  (6.5)

The potential energy, Ep, (and commonly V, but do not 
confuse that with the volume!) of a body is the energy 
it possesses as a result of its position. In the absence of 
losses, the potential energy of a stationary particle is equal 
to the work that had to be done on the body to bring it to 
its current location. Because dwbody = −Fxdx, it follows that 
dEp = −Fxdx and therefore

F
E
x

d
dx

p= − 	
Potential energy 
[relation to force]   (6.6)

If Ep increases as x increases, then Fx is negative (directed 
towards negative x, Sketch 6.1). Thus, the steeper the gra-
dient (the more strongly the potential energy depends on 
position), the greater is the force.
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 e

n
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g
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 E
p

Position, x

F F F

dEp/dx > 0

dEp/dx > 0

dEp/dx < 0

 Sketch 6.1 

No universal expression for the potential energy can 
be given because it depends on the type of force the body 
experiences. For a particle of mass m at an altitude h close 
to the surface of the Earth, the gravitational potential 
energy is

E h E mgh( ) (0)p p= + 	 Gravitational potential energy   (6.7)

where g is the acceleration of free fall (g depends on loca-
tion, but its ‘standard value’ is close to 9.81 m s−2). The zero 
of potential energy is arbitrary. For a particle close to the 
surface of the Earth, it is common to set Ep(0) = 0.

The Coulomb potential energy of two electric charges, 
Q1 and Q2, separated by a distance r is

E Q Q
r4p

1 2
ε= π 	 Coulomb potential energy   (6.8)

The quantity ε (epsilon) is the permittivity; its value 
depends upon the nature of the medium between the 
charges. If the charges are separated by a vacuum, then 
the constant is known as the vacuum permittivity, ε0 
(epsilon zero), or the electric constant, which has the 
value 8.854 × 10−12 J−1 C2 m−1. The permittivity is greater 
for other media, such as air, water, or oil. It is commonly 
expressed as a multiple of the vacuum permittivity:

ε = εrε0	 Permittivity 
[definition]

  (6.9)

with εr the dimensionless relative permittivity (formerly, 
the dielectric constant).

The total energy of a particle is the sum of its kinetic 
and potential energies:

E = Ek + Ep� Total energy 
[definition]   (6.10)

Provided no external forces are acting on the body, its total 
energy is constant. This central statement of physics is 
known as the law of the conservation of energy. Potential 
and kinetic energy may be freely interchanged, but their 
sum remains constant in the absence of external influ-
ences.



The chemist’s toolkit 7   The equipartition 
theorem

The Boltzmann distribution (see the Prologue in the text) 
can be used to calculate the average energy associated 
with each mode of motion of an atom or molecule in a 
sample at a given temperature. However, when the tem-
perature is so high that many energy levels are occupied, 
there is a much simpler way to find the average energy, 
through the equipartition theorem:

For a sample at thermal equilibrium the average value 
of each quadratic contribution to the energy is 12kT.

A ‘quadratic contribution’ is a term that is proportional 
to the square of the momentum (as in the expression for the 

kinetic energy, Ek = p2/2m; The chemist’s toolkit 6) or the dis-
placement from an equilibrium position (as for the potential 
energy of a harmonic oscillator, Ep = 12 kfx2). The theorem is 
a conclusion from classical mechanics and for quantized 
systems is applicable only when the separation between the 
energy levels is so small compared to kT that many states 
are populated. Under normal conditions the equipartition 
theorem gives good estimates for the average energies associ-
ated with translation and rotation. However, the separation 
between vibrational and electronic states is typically much 
greater than for rotation or translation, and for these types of 
motion the equipartition theorem is unlikely to apply.



The chemist’s toolkit 8   Electrical charge, 
current, power, and energy

Electrical charge, Q, is measured in coulombs, C. The 
elementary charge, e, the magnitude of charge carried by 
a single electron or proton, is approximately 1.6 × 10−19 C. 
The motion of charge gives rise to an electric current, I, 
measured in coulombs per second, or amperes, A, where 
1 A = 1 C s−1. If the electric charge is that of electrons (as it 
is for the current in a metal), then a current of 1 A repre-
sents the flow of 6 × 1018 electrons (10 μmol e−) per second.

When a current I flows through a potential difference 
Δϕ (measured in volts, V, with 1 V = 1 J C−1), the power, P, is

P = IΔϕ� (8.1)

It follows that if a constant current flows for a period t the 
energy supplied is

E = Pt = ItΔϕ� (8.2)

Because 1 A V s = 1 (C s−1) V s = 1 C V = 1 J, the energy 
is obtained in joules with the current in amperes, the 
potential difference in volts, and the time in seconds. That 
energy may be supplied as either work (to drive a motor) or 
as heat (through a ‘heater’). In the latter case

q = ItΔϕ� (8.3)



The chemist’s toolkit 9   Partial derivatives

A partial derivative of a function of more than one 
variable, such as f(x,y), is the slope of the function with 
respect to one of the variables, all the other variables 
being held constant (Sketch 9.1). Although a partial 
derivative shows how a function changes when one vari-
able changes, it may be used to determine how the func-
tion changes when more than one variable changes by 
an infinitesimal amount. Thus, if f is a function of x and 
y, then when x and y change by dx and dy, respectively, f 
changes by

f f
x x f

y yd d d
y x

= ∂
∂







+ ∂
∂







� (9.1)

where the symbol ∂ (‘curly d’) is used (instead of d) 
to denote a partial derivative and the subscript on 
the parentheses indicates which variable is being held 
constant. 

x

y

f(x,y)

(∂f/∂y)x

(∂f/∂x)y

Sketch 9.1 

The quantity df is also called the differential of f. Successive 
partial derivatives may be taken in any order:

∂
∂

∂
∂





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







 = ∂

∂
∂
∂











y

f
x x

f
y

y x x y

� (9.2)

Brief illustration 9.1:  partial derivatives

Suppose that f(x,y) = ax3y + by2 (the function plotted in 
Sketch 9.1) then

f
x ax y f

y ax by3 2
y x

2 3∂
∂







= ∂
∂







= +

When x and y undergo infinitesimal changes, f changes by

df = 3ax2y dx + (ax3 + 2by) dy

To verify that the order of taking the second partial deriva-
tive is irrelevant, form

y
f
x

ax y
y ax(3 ) 3

y x x

2
2∂

∂
∂
∂















 = ∂

∂






=

x
f
y

ax by
x ax( 2 ) 3

x y y

3
2∂

∂
∂
∂













= ∂ +
∂







=

Now suppose that z is a variable on which x and y depend 
(for example, x, y, and z might correspond to p, V, and T). 
The following relations then apply:

Relation 1. When x is changed at constant z:

f
x

f
x

f
y

y
x

z y x z

∂
∂





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= ∂
∂







+ ∂
∂





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∂
∂





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� (9.3)

Relation 2

y
x x y

1
( / )

z z

∂
∂





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= ∂ ∂ � (9.4)

Relation 3

x
y

x
z

z
y

z y x

∂
∂





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= − ∂
∂







∂
∂





 � (9.5)

Combining Relations 2 and 3 results in the Euler chain 
relation:

y
x

x
z

z
y 1

z y x

∂
∂





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∂
∂





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∂
∂







= − � Euler chain relation   (9.6)
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Suppose that df can be expressed in the following way:

f g x y x h x y yd ( , )d ( , )d= + � (10.1)

Is df is an exact differential? If it is exact, then it can be 
expressed in the form

f f
x x f

y yd ∂
∂ d ∂

∂ d
y x

=



 + 





� (10.2)

Comparing these two expressions gives

f
x g x y f

y h x y∂
∂ ( , ) ∂

∂ ( , )
y x





 = 



 = � (10.3)

It is a property of partial derivatives that successive deriva-
tives may be taken in any order:

y
f
x x

f
y

∂ ∂
∂

∂
∂

∂
∂

y x x y
∂





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







 = 



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



 � (10.4)

Taking the partial derivative with respect to x of the first 
equation, and with respect to y of the second gives

y
f
x

g x y
y

x
f
y

h x y
x

∂
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∂
∂

∂ ( , )
∂

∂
∂

∂
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∂ ( , )
∂

y x x

x y y
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
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







 = 



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



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



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= 





� (10.5)

By the property of partial derivatives these two successive 
derivatives of f with respect to x and y must be the same, 
hence

g x y
y

h x y
x

∂ ( , )
∂

∂ ( , )
∂

x y





 = 





� (10.6)

If this equality is satisfied, then f g x y x h x y yd ( , )d ( , )d= +  is 
an exact differential. Conversely, if it is known from other 
arguments that df is exact, then this relation between the 
partial derivatives follows.

Brief illustration 10.1:  Exact differentials

Suppose 

g x,y h x,y

f ax y x ax by yd 3 d ( 2 )d
( ) ( )

2 3
� �� ���

= + +

To test whether df is exact, form

g
f

ax y
y ax∂ ∂(3 )
∂ 3

x x

2
2

∂




 =





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=

h
x

ax by
x ax
2

3
y y

3
2( )∂

∂




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=
∂ +

∂








 =

The two second derivatives are the same, so df is an exact dif-
ferential and the function f(x,y) can be constructed (see below).

Brief illustration 10.2:  Inexact differentials 

Suppose the following expression is encountered:

g x,y h x,y

f ax y x ax by yd 3 d ( 2 )d
( ) ( )

2 2
� �� ���

= + +

(Note the presence of ax2 rather than the ax3 in the preced-
ing Brief illustration.) To test whether this is an exact dif-
ferential, form

g
y

ax y
y ax∂

∂
∂(3 )

∂ 3
x x

2
2



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
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ax by
x ax∂
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∂( 2 )
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y y
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 = +



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=

These two expressions are not equal, so this form of df is not 
an exact differential and there is not a corresponding inte-
grated function of the form f(x,y). 

Further information
If df is exact, then

●	 From a knowledge of the functions g and h the func-
tion f can be constructed.

●	 It then follows that the integral of df between speci-
fied limits is independent of the path between those 
limits.

The first conclusion is best demonstrated with a specific 
example.

Brief illustration 10.3:  The reconstruction of an equation

Consider the differential df = 3ax2ydx + (ax3 + 2by)dy, which 
is known to be exact. Because (∂f/∂x)y = 3ax2y, it can be 
integrated with respect to x with y held constant, to obtain

f f ax y x ay x x ax y kd 3  d 3  d2 2 3∫ ∫∫= = = = +

where the ‘constant’ of integration k may depend on y 
(which has been treated as a constant in the integration), 
but not on x. To find k(y), note that (∂f/∂y)x = ax3 + 2by, and 
therefore





 = +





= + = +f
y

ax y k
y ax k

y ax by∂
∂

∂( )
∂

d
d 2

x x

3
3 3

Therefore
k
y byd

d 2=

from which it follows that k = by2 + constant. It follows that 

f(x,y) = ax3y + by2 + constant
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The value of the constant is pinned down by stating the 
boundary conditions; thus, if it is known that f(0,0) = 0, then 
the constant is zero. 

To demonstrate that the integral of df is independent of 
the path is now straightforward. Because df is a differen-
tial, its integral between the limits a and b is 

f f b f ad ( ) ( )
a

b

∫ = − � (10.7)

The value of the integral depends only on the values at the 
end points and is independent of the path between them. 
If df is not an exact differential, the function f does not 
exist, and this argument no longer holds. In such cases, the 
integral of df does depend on the path.

Brief illustration 10.4:  Path-dependent integration

Consider the inexact differential (the expression with ax2 in 
place of ax3 inside the second parentheses):

df = 3ax2ydx + (ax2 + 2by)dy

Suppose df is integrated from (0,0) to (2,2) along the two 
paths shown in Sketch 10.1. 

x

y

(0,2)

(2,0)

Path 1Path 2

(2,2)y = 2

y = 0

x 
= 

2

x 
= 

0

Sketch 10.1

Along Path 1, 

f ax y x ax by y

a y b y y a b

d 3  d ( 2 )d

0 4 d 2  d 8 4

Path 1

2

0,0

2,0 2

2,0

2,2

0

2

0

2

∫ ∫ ∫
∫ ∫

= + +

= + + = +

whereas along Path 2,

f ax y x ax by y

a x x b y y a b

d 3 d ( 2 )d

6 d 0 2  d 16 4

2

0,2

2,2

Path 2

2

0,0

0,2

2

0

2

0

2

∫∫ ∫
∫ ∫

= + +

= + + = +

The two integrals are not the same.

An inexact differential may sometimes be converted 
into an exact differential by multiplication by a factor 
known as an integrating factor. A physical example is the 
integrating factor 1/T that converts the inexact differential 
dqrev into the exact differential dS in thermodynamics 
(Topic 3B of the text).

Brief illustration 10.5:  An integrating factor 

The differential df = 3ax2ydx + (ax2 + 2by)dy is inexact; 
the same is true when b = 0 and so for simplicity consider  
df = 3ax2ydx + ax2dy instead. Multiplication of this df by 
xmyn and writing xmyndf = df ′ gives

g x,y h x,y

f ax y x ax y yd 3 d   d
( ) ( )
m n m n2 1 2

� �� �� ��� ��
′ = ++ + +

Now

g
y

ax y
y a n x y∂
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x a m x y∂
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m n
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m n
2

1( ) ( )



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







 = +

+
+

For the new differential to be exact, these two partial deriv-
atives must be equal, so write

3a(n + 1)xm+2yn = a(m + 2)xm+1yn

which simplifies to

3(n + 1)x = m + 2

The only solution that is independent of x is n = –1 and m = 
–2. It follows that

df ′ = 3adx + (a/y)dy

is an exact differential. By the procedure already illustrated, 
its integrated form is f ′(x,y) = 3ax + a ln y + constant.
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concentration

Let A be the solvent and B the solute. The molar concen-
tration (informally: ‘molarity’), cB or [B], is the amount of 
solute molecules (in moles) divided by the volume, V, of 
the solution:

c n
VB
B= � (11.1)

It is commonly reported in moles per cubic decimetre  
(mol dm−3) or, equivalently, in moles per litre (mol L−1). It is 
convenient to define its ‘standard’ value as c⦵ = 1 mol dm−3.

The molality, bB, of a solute is the amount of solute spe-
cies (in moles) in a solution divided by the total mass of the 
solvent (in kilograms), mA:

b n
mB

B

A
= � (11.2)

Both the molality and mole fraction are independent of 
temperature; in contrast, the molar concentration is not. It 
is convenient to define the ‘standard’ value of the molality 
as b⦵ = 1 mol kg−1.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total 
amount n of molecules. If the mole fraction of the solute 
is xB, the amount of solute molecules is n x nB B= . The mole 
fraction of solvent molecules is xA = 1 − xB, so the amount 
of solvent molecules is nA = xAn = (1 − xB)n. The mass of sol-
vent, of molar mass MA, present is m n M x nM(1 )A A A B A= = − .  
The molality of the solute is therefore

b n
m

x n
x nM

x
x M(1 ) (1 )B

B

A

B

B A

B

B A
= = − = − � (11.3a)

The inverse of this relation, the mole fraction in terms of 
the molality, is

x b M
b M1B
B A

B A
= +

� (11.3b)

2. The relation between molality and molar  
concentration

The total mass of a volume V of solution (not solvent) of 
mass density ρ is m = ρV. The amount of solute molecules 
in this volume is nB = cBV. The mass of solute present is mB =  
nBMB = cBVMB. The mass of solvent present is therefore 
mA = m – mB = ρV − cBVMB = (ρ − cBMB)V. The molality 
is therefore

b n
m

c V
c M V

c
c M( )B

B

A

B

B B

B

B Bρ ρ= = − = − � (11.4a)

The inverse of this relation, the molar concentration in 
terms of the molality, is

c b
b M1B
B

B B

ρ= + � (11.4b)

3. The relation between molar concentration and  
mole fraction

By inserting the expression for bB in terms of xB into the 
expression for cB, the molar concentration of B in terms of 
its mole fraction is

c x
x M x MB

B

A A B B

ρ= +
� (11.5)

with xA = 1 − xB. For a dilute solution in the sense that 
x M x MB B A A<< ,

c x M xB
A A

B
ρ≈ 



 � (11.6)

If, moreover, x 1B << , so ≈x 1A , then

c M xB
A

B
ρ≈ 



 � (11.7)
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A function f(x) can be expressed in terms of its value in the 
vicinity of x = a by using the Taylor series

f x f a f
x x a f
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d ( ) 1
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d
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∞
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x
x a1
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( )
n

n

n
a

n

0

� Taylor series   (12.1)

where the notation (…)a means that the derivative is evalu-
ated at x = a and n! denotes a factorial defined as

n! = n(n − 1)(n − 2)…1,  0! ≡ 1� Factorial   (12.2)

The Maclaurin series for a function is a special case of 
the Taylor series in which a = 0. The following Maclaurin 
series are used at various stages in the text:

x x x x(1 ) 1 ( 1)
n

n n1 2

0
� ∑+ = − + − = −−

=

∞

� (12.3a)

x x x
ne 1 !

x
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1
2

2

0
� ∑= + + + =
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∞

� (12.3b)

x x x x x
nln(1 ) ( 1)

n

n
n

1
2

2 1
3

3

1

1� ∑+ = − + − = −
=

∞
+ � (12.3c)

Series expansions are used to simplify calculations, 
because when |x| << 1 it is possible, to a good approximation, 
to terminate the series after one or two terms. Thus, provided  
|x| << 1, 

(1 + x)−1 ≈ 1 − x� (12.4a)
ex ≈ 1 + x� (12.4b)
ln(1 + x) ≈ x� (12.4c)

A series is said to converge if the sum approaches a 
finite, definite value as n approaches infinity. If the sum 
does not approach a finite, definite value, then the series 
is said to diverge. Thus, the series expansion of + −x(1 ) 1 
converges for |x| < 1 and diverges for |x| ≥ 1. Tests for con-
vergence are explained in mathematical texts.
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radiation

Electromagnetic radiation consists of oscillating electric and 
magnetic disturbances that propagate as waves. The two com-
ponents of an electromagnetic wave are mutually perpen-
dicular and are also perpendicular to the direction of propa-
gation (Sketch 13.1). Electromagnetic waves travel through a 
vacuum at a constant speed called the speed of light, c, which 
has the defined value of exactly 2.997 924 58 × 108 m s−1.

Magnetic
�eld

Electric
�eld

Propagation
direction, at speed c

E

B

Sketch 13.1

A wave is characterized by its wavelength, λ (lambda), 
the distance between consecutive peaks of the wave (Sketch 
13.2). The classification of electromagnetic radiation accord-
ing to its wavelength is shown in Sketch 13.3. Light, which 
is electromagnetic radiation that is visible to the human 
eye, has a wavelength in the range 420 nm (violet light) to 
700 nm (red light). The properties of a wave may also be 
expressed in terms of its frequency, ν (nu), the number of 
oscillations in a time interval divided by the duration of the 
interval. Frequency is reported in hertz, Hz, with 1 Hz = 1 s−1 
(i.e. 1 cycle per second). Light spans the frequency range 
from 710 THz (violet light) to 430 THz (red light).

Wavelength, λ

Sketch 13.2

The wavelength and frequency of an electromagnetic 
wave are related by: 

λν=c � The relation between wavelength 
and frequency in a vacuum   (13.1)

It is also common to describe a wave in terms of its wave-
number, �ν  (nu tilde), which is defined as

� � c
1  or equivalently ν λ ν ν= = �   Wavenumber 

[definition]
  (13.2)

Thus, wavenumber is the reciprocal of the wavelength 
and can be interpreted as the number of wavelengths in 
a given distance. In spectroscopy, for historical reasons, 
wavenumber is usually reported in units of reciprocal cen-
timetres (cm−1). Visible light therefore corresponds to elec-
tromagnetic radiation with a wavenumber of 14 000 cm−1 
(red light) to 24 000 cm−1 (violet light).

Electromagnetic radiation that consists of a single frequency 
(and therefore a single wavelength) is monochromatic, 
because it corresponds to a single colour. White light consists 
of electromagnetic waves with a continuous, but not uniform, 
spread of frequencies throughout the visible region of the 
spectrum.
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A characteristic property of waves is that they interfere 
with one another, which means that they result in a greater 
amplitude where their displacements add and a smaller 
amplitude where their displacements subtract (Sketch 
13.4). The former is called ‘constructive interference’ and 
the latter ‘destructive interference’. The regions of con-
structive and destructive interference show up as regions 
of enhanced and diminished intensity. The phenomenon 
of diffraction is the interference caused by an object in 
the path of waves and occurs when the dimensions of the 
object are comparable to the wavelength of the radiation. 
Light waves, with wavelengths of the order of 500 nm, are 
diffracted by narrow slits.

Constructive interference

Destructive interference

Sketch 13.4
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Complex numbers have the general form

z = x + iy� (14.1a)

where = −i 1. The real number x is the ‘real part of z’, 
denoted Re(z); likewise, the real number y is ‘the imagi-
nary part of z’, Im(z). The complex conjugate of z, denoted 
z*, is formed by replacing i by −i:

z* = x − iy� (14.1b)

Brief illustration 14.1:  Operations with complex numbers

Consider the complex numbers z1 = 6 + 2i and z2 = −4 − 3i. 
Then

z1 + z2 = (6 – 4) + (2 – 3)i = 2 – i
z1 – z2 = 10 + 5i
z1z2 = {6(–4) – 2(–3)} + {6(–3) + 2(–4)}i = –18 – 26i

The product of z* and z is denoted |z|2 and is called the 
square modulus of z. From the definition of z and z* and 
i2 = −1 it follows that

|z|2 = z*z = (x + iy)(x − iy) = x2 + y2� (14.2)

The square modulus is a real, non-negative number. The 
absolute value or modulus is denoted |z| and is given by:

= = +z z z x y| | ( ) ( )* 1/2 2 2 1/2 � (14.3)

The inverse of z, denoted z−1, is such that zz−1 = 1, which is 
satisfied if

z z
z
*1
2=− � (14.4)

This construction is used in the division of complex numbers:
z
z z z1

2
1 2

1= −
� (14.5)

Brief illustration 14.2:  Inverse

Consider the complex number z = 8 – 3i. Its square modulus 
is

|z|2 = z*z = (8 − 3i)*(8 − 3i) = (8 + 3i)(8 − 3i) = 64 + 9 = 73

The modulus is therefore |z| = 731/2. The inverse of z is

z 8 3i
73

8
73

3
73 i

1 = + = +−

Then

6 2i
8 3i (6 2i)(8 3i) (6 2i) 8

73
3
73 i

42
73

34
73 i

1+
− = + − = + +



 = − +−

For further information about complex numbers, see The 
chemist’s toolkit 16 .



The chemist’s toolkit 15   Integration 
by parts

Many integrals in quantum mechanics have the form 
∫ f x h x x( ) ( )d , where f(x) and h(x) are two different func-
tions. Such integrals can often be evaluated by regard-
ing h(x) as the derivative of another function, g(x), such 
that h(x) = dg(x)/dx. For instance, if h(x) = x, then g(x) 
= x1

2
2. The integral is then found using integration by 

parts:

∫ ∫= −f g
x x fg g f

x xd
d d d

d d � (15.1a)

The procedure is successful only if the integral on the right 
turns out to be one that can be evaluated more easily than 
the one on the left. The procedure is often summarized by 
expressing this relation as

∫ ∫= −f g fg g fd d � (15.1b)

Brief illustration 15.1:  Integration by parts 

Integrals over xe−ax and their analogues occur commonly 
in the discussion of atomic structure and spectra. They 
may be integrated by parts, as in the following. Consider 
integration of xe−ax. In this case, f(x) = x, so df(x)/dx = 1 and  
dg(x)/dx = e−ax, so g(x) = –(1/a)e−ax. Then

f dg/ dx f
g g

df / dx�� ��
� �

∫ ∫

∫

= − − −

= − + = − − +

−
− −

−
−

− −

x x x a a x

x
a a x x

a a

e d e e 1 d

    e 1 e d e e  constant

ax
ax ax

ax
ax

ax ax

2

If the integral is definite, then apply the limits to the final 
step above and write

f dg/ dx f
g g

df / dx�� ��
� �

∫∫

∫

= − − −

= − + = − =

−
− ∞ −∞∞

− ∞ −
−∞ ∞

x x x a a x

x
a a x

a a

e d e e 1 d

e 1 e d 0 e 1

ax
ax ax

ax
ax

ax

0 00

0 20 0 2



The chemist’s toolkit 16   Euler’s formula

A complex number z = x + iy can be represented as a point in 
a plane, the complex plane, with Re(z) along the x-axis and 
Im(z) along the y-axis (Sketch 16.1). The position of the point 
can also be specified in terms of a distance r and an angle 
ϕ (the polar coordinates). Then x = r cos ϕ and y = r sin ϕ,  
so it follows that

z = r(cos ϕ + i sin ϕ)� (16.1)

The angle ϕ, called the argument of z, is the angle that r 
makes with the x-axis. Because y/x = tan ϕ, it follows that

r x y z y
x( )        arctan2 2 1/2 φ= + = = � (16.2)

0
Re(z)

Im
(z

)

r

ϕ

(x,iy)

Sketch 16.1

One of the most useful relations involving complex 
numbers is Euler’s formula:

eiϕ = cos ϕ + i sin ϕ� (16.3)

from which it follows that z = r(cos ϕ + i sin ϕ) can be writ-
ten

z = reiϕ� (16.4)

Two more useful relations arise by noting that e−iϕ = 
cos(−ϕ) + i sin(−ϕ) = cos ϕ − i sin ϕ; it then follows that

cos ϕ = 12 (eiϕ + e−iϕ)    sin ϕ = − 12 i(eiϕ − e−iϕ)� (16.5)

The polar form of a complex number is commonly used to 
perform arithmetical operations. For instance, the prod-
uct of two complex numbers in polar form is

= =φ φ φ φ+z z r r r r( e )( e ) e1 2 1
i

2
i

1 2
i( )1 2 1 2 � (16.6)

This construction is illustrated in Sketch 16.2.

Re(z)

Im
(z

)

0
ϕ1

ϕ1 + ϕ2

ϕ2

r1

r1r2

r2

Sketch 16.2

Brief illustration 16.1:  Polar representation

Consider the complex number z = 8 – 3i. From Brief illustra-
tion 14.1, r = |z| = 731/2. The argument of z is

arctan 3
8 0.359 rad,  or 20.6φ = −



 = − − °

The polar form of the number is therefore

z 73 e1/2 0.359i= −

Brief illustration 16.2:  Roots

To determine the 5th root of z = 8 – 3i, note that from Brief 
illustration 16.1 its polar form is

z 73 e 8.544e1/2 0.359i 0.359i= =− −

The 5th root is therefore

z (8.544e ) 8.544 e 1.536e1/5 0.359i 1/5 1/5 0.359i/5 0.0718i= = =− − −

It follows that x = 1.536 cos(–0.0718) = 1.532 and y = 1.536 
sin(–0.0718) = –0.110 (note that the ϕ are in radians), so

(8 – 3i)1/5 = 1.532 – 0.110i



The chemist’s toolkit 17   Vectors

A vector is a quantity with both magnitude and direction. 
The vector v shown in Sketch 17.1 has components on the 
x, y, and z axes with values vx, vy, and vz, respectively, which 
may be positive or negative. For example, if vx = −1.0, the 
x-component of the vector v has a magnitude of 1.0 and 
points in the −x direction. The magnitude of a vector is 
denoted v or |v| and is given by

v = (vx
2 + vy

2 + vz
2)1/2� (17.1)

Thus, a vector with components vx = −1.0, vy = +2.5, and 
vz = +1.1 has magnitude 2.9 and would be represented by an 
arrow of length 2.9 units and the appropriate orientation (as 
in the inset in the Sketch). Velocity and momentum are vec-
tors; the magnitude of a velocity vector is called the speed. 
Force, too, is a vector. Electric and magnetic fields are two 
more examples of vectors.

v

vx
vy

vz

0

+1.1

+2.5

–1.0 Length 2.9

Sketch 17.1

Further information
If the polar coordinates of the vector v are θ and ϕ (the 
colatitude and azimuth, respectively), then

vx = v sin θ cos ϕ
vy = v sin θ sin ϕ 
vz = v cos θ� Orientation   (17.2)

and therefore that

θ = arccos(vz/v)	 ϕ = arctan(vy/vx)� (17.3)

Brief illustration 17.1:  Vector orientation

The vector v = 2i + 3j – k has magnitude 

v = {22 + 32 + (–1)2}1/2 = 141/2 = 3.74

Its direction is given by 

θ = arccos(–1/141/2) = 105.5°  ϕ = arctan(3/2) = 56.3°

The operations involving vectors (addition, multiplica-
tion, etc.) needed for the text are described in The chemist’s 
toolkit 22.



The chemist’s toolkit 18   The classical 
harmonic oscillator

A harmonic oscillator consists of a particle of mass m 
that experiences a ‘Hooke’s law’ restoring force, one that 
is proportional to the displacement of the particle from 
equilibrium. An example is a particle of mass m attached 
to a spring or an atom attached to another by a chemical 
bond. For a one-dimensional system,

Fx = −kfx� (18.1)

where the constant of proportionality is called the force 
constant. From Newton’s second law of motion (F = ma = 
m(d2x/dt2); see The chemist’s toolkit 3),

m x
t

k xd
d

2

2 f= − � (18.2)

If x = 0 at t = 0, a solution (as may be verified by substitu-
tion) is

ν ν= π = π




x t A t k

m( )  sin 2        1
2

f
1/2

� (18.3)

This solution shows that the position of the particle 
oscillates harmonically (i.e. as a sine function) with 
frequency ν (units: Hz) and that the frequency of oscil-
lation is high for light particles (m small) attached to 
stiff springs (kf large). It is useful to define the  angular 
frequency as ω = 2πν (units: radians per second). It fol-
lows that the angular frequency of a classical harmonic 
oscillator is ω = (kf/m)1/2.

The negative sign in the expression for the force implies 
that it is negative (directed toward negative x) if the dis-
placement is positive, and vice versa. Potential energy V 
is related to force by F = −dV/dx (The chemist’s toolkit 6), 
so the potential energy corresponding to a Hooke’s law 
restoring force is

V x k x( ) 1
2 f

2= � (18.4)

Such a potential energy is called a ‘harmonic potential 
energy’ or a ‘parabolic potential energy’.

As the particle moves away from the equilibrium posi-
tion its potential energy increases and so its kinetic energy, 
and hence its speed, decreases. At some point all the 
energy is potential and the particle comes to rest at a turn-
ing point. The particle then accelerates back towards and 
through the equilibrium position. The greatest probability 
of finding the particle is where it is moving most slowly, 
which is close to the turning points.

The turning point, xtp, of a classical oscillator occurs 
when its potential energy 12 kfx2 is equal to its total energy, so

x E
k
2

tp
f

1/2

= ±





The turning point increases with the total energy: in clas-
sical terms, the amplitude of the swing of a pendulum or 
the displacement of a mass on a spring increases.



The chemist’s toolkit 19  C ylindrical 
coordinates

For systems with cylindrical symmetry it is best to work 
in cylindrical coordinates r, ϕ, and z (Sketch 19.1), with 

x = r cos ϕ    y = r sin ϕ� (19.1)

and where

0 ≤ r ≤ ∞    0 ≤ ϕ ≤ 2π    −∞ ≤ z ≤ +∞� (19.2)

The volume element is

dτ = r dr dϕ dz� (19.3a)

For motion in a plane, z = 0 and the volume element is

dτ = r dr dϕ� (19.3b)

x
y

ϕ

z

r

Sketch 19.1 



The chemist’s toolkit 20   Angular 
momentum

Angular velocity, ω (omega), is the rate of change of angu-
lar position; it is reported in radians per second (rad s−1). 
There are 2π radians in a circle, so 1 cycle per second is 
the same as 2π radians per second. For convenience, the 
‘rad’ is often dropped, and the units of angular velocity 
are denoted s−1.

Expressions for other angular properties follow by anal-
ogy with the corresponding equations for linear motion 
(The chemist’s toolkit 3). Thus, the magnitude, J, of the 
angular momentum, J, is defined, by analogy with the 
magnitude of the linear momentum (p = mv):

J Iω= � (20.1)

The quantity I is the moment of inertia of the object. It 
represents the resistance of the object to a change in the 
state of rotation in the same way that mass represents the 
resistance of the object to a change in the state of transla-
tion. In the case of a rotating molecule the moment of 
inertia is defined as

∑=I m r
i

i i
2 � (20.2)

where mi is the mass of atom i and ri is its perpendicular 
distance from the axis of rotation (Sketch 20.1). For a 
point particle of mass m moving in a circle of radius r, the 
moment of inertia about the axis of rotation is

I = mr2� (20.3)

The SI units of moment of inertia are therefore kilogram 
metre2 (kg m2), and those of angular momentum are kilo-
gram metre2 per second (kg m2 s−1).

mA

mD

rD

mC

rC

mB

rB

rA = 0

I = mBrB
2 + mCrC

2 + mDrD
2

Sketch 20.1

The angular momentum is a vector, a quantity with both 
magnitude and direction (The chemist’s toolkit 17). For 
rotation in three dimensions, the angular momentum has 
three components: Jx, Jy, and Jz. For a particle travelling on 
a circular path of radius r about the z-axis, and therefore 
confined to the xy-plane, the angular momentum vector 
points in the z-direction only (Sketch 20.2), and its only 
component is

Jz = ±pr� (20.4)

where p is the magnitude of the linear momentum in the 
xy-plane at any instant. When Jz > 0, the particle travels in 
a clockwise direction as viewed from below; when Jz < 0, the 
motion is anticlockwise. A particle that is travelling at high 
speed in a circle has a higher angular momentum than a 
particle of the same mass travelling more slowly. An object 
with a high angular momentum (like a flywheel) requires 
a strong braking force (more precisely, a strong ‘torque’) to 
bring it to a standstill.

Jz > 0

Jz < 0r

r
p

p

Sketch 20.2
The components of the angular momentum vector J when 

it lies in a general orientation are

Jx = ypz − zpy    Jy = zpx − xpz    Jz = xpy − ypx� (20.5)

where px is the component of the linear momentum in the 
x-direction at any instant, and likewise py and pz in the 
other directions. The square of the magnitude of the vec-
tor is given by

J2 = Jx
2 + Jy

2 + Jz
2� (20.6)

By analogy with the expression for linear motion (Ek = 
v =m p m/21

2
2 2 ), the kinetic energy of a rotating object is

ω= =E I J
I2

1
2k

2
2

� (20.7)

For a given moment of inertia, high angular momentum 
corresponds to high kinetic energy. As may be verified, the 
units of rotational energy are joules (J).

The analogous roles of m and I, of v and ω, and of p and 
J in the translational and rotational cases respectively pro-
vide a ready way of constructing and recalling equations. 
These analogies are summarized below:

Translation Rotation

Property Significance Property Significance

Mass, m Resistance to 
the effect of a 
force

Moment of 
inertia, I

Resistance to the 
effect of a twisting 
force (torque)

Speed, v Rate of 
change of 
position

Angular 
velocity, ω

Rate of change of 
angle

Magnitude 
of linear 
momentum, p

p = mv Magnitude 
of angular 
momentum, J

J = Iω

Translational 
kinetic energy, 
Ek

Ek = 12 �mv2 = 
p2/2m

Rotational 
kinetic energy, 
Ek

Ek = 1
2 Iω2 = J 2/2I



The chemist’s toolkit 21  S pherical polar 
coordinates

The mathematics of systems with spherical symmetry 
(such as atoms) is often greatly simplified by using spheri-
cal polar coordinates (Sketch 21.1): r, the distance from 
the origin (the radius), θ, the colatitude, and ϕ, the azi-
muth. The ranges of these coordinates are (with angles in 
radians, Sketch 21.2): 

0 ≤ r ≤ +∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

θ

ϕ

x

y

z

r

dr

r sin θ dϕ
r dθ

r2 sin θ dr dθdϕ

Sketch 21.1

ϕ

0

θ

02π

π
Sketch 21.2

An angle in radians is defined as the ratio of the length 
of an arc, s, to the radius r of a circle, so θ = s/r. For a 
complete circle, the arc length is the circumference, 2πr, so 
the angle subtended in radians for a complete revolution 
is 2πr/r = 2π. That is, 360° corresponds to 2π radians, and 
consequently 180° corresponds to π radians.

Cartesian and polar coordinates are related by

θ φ θ φ θ= = =x r y r z rsin cos     sin sin     cos    � (21.1)

The volume element in Cartesian coordinates is dτ = 
dxdydz, and in spherical polar coordinates it becomes

τ θ θ φ=r rd sin  d d d    2 � (21.2)

An integral of a function f(r,θ,ϕ) over all space in polar 
coordinates therefore has the form

f f r r rd ( , , ) sin  d d d    
0

2

00

2∫ ∫∫∫τ θ φ θ θ φ=
ππ∞

� (21.3)

where the limits on the integrations are for r, θ, and ϕ, 
respectively.



The chemist’s toolkit 22   The manipulation 
of vectors

In three dimensions, the vectors u (with components ux, 
uy, and uz) and v (with components vx, vy, and vz) have the 
general form:

u = uxi + uy  j + uzk	 v = vxi + vy  j + vzk� (22.1)

where i, j, and k are unit vectors, vectors of magnitude 1, 
pointing along the positive directions on the x, y, and z 
axes. The operations of addition, subtraction, and multi-
plication are as follows:

1.	Addition:
v + u = (vx + ux)i + (vy + uy)j + (vz + uz)k� (22.2)

2.	Subtraction:
v − u = (vx − ux)i + (vy − uy)j + (vz − uz)k� (22.3)

Brief illustration 22.1:  Addition and subtraction

Consider the vectors u = i – 4j + k (of magnitude 4.24) and  
v = –4i + 2j + 3k (of magnitude 5.39) Their sum is

u + v = (1 – 4)i + (–4 + 2)j + (1 + 3)k = –3i – 2j + 4k

The magnitude of the resultant vector is 291/2 = 5.39. The 
difference of the two vectors is

u – v = (1 + 4)i + (–4 – 2)j + (1 – 3)k = 5i – 6j – 2k

The magnitude of this resultant is 8.06. Note that in this case 
the difference is longer than either individual vector.

3.	Multiplication:
(a)	 The scalar product, or dot product, of the two 

vectors u and v is 
u·v = uxvx + uyvy + uzvz� (22.4)

The scalar product of a vector with itself gives the square 
magnitude of the vector:

u·u = ux
2 + uy

2 + uz
2 = u2� (22.5)

(b)	The vector product, or cross product, of two vec-
tors is

u
i j k
u u ux y z

x y z

× =

v v v

v

= (uyvz − uzvy)i − (uxvz − uzvx)j + (uxvy − uyvx)k
� (22.6)

(Determinants are discussed in The chemist’s toolkit 23.) 
If the two vectors lie in the plane defined by the unit vec-
tors i and j, their vector product lies parallel to the unit 
vector k.

Brief illustration 22.2:  Scalar and vector products

The scalar and vector products of the two vectors in Brief 
ilustration 22.1, u = i – 4j + k (of magnitude 4.24) and v = 
–4i + 2j + 3k (of magnitude 5.39) are 

u ⋅ v = {1 × (–4)} + {(–4) × 2} + {1 × 3} = –9

v 1 4 1
4 2 3

u
i j k

× = −
−

= �{(−4)(3) − (1)(2)}i − {(1)(3) − (1)(−4)}j + {(1)(2) −  
(−4)(−4)}k

	 = −14i − 7j − 14k
The vector product is a vector of magnitude 21.00 pointing 

in a direction perpendicular to the plane defined by the two 
individual vectors.

Further information
The manipulation of vectors is commonly represented 
graphically. Consider two vectors v and u making an angle 
θ (Sketch 22.1a). The first step in the addition of u to v con-
sists of joining the tip (the ‘head’) of u to the starting point 
(the ‘tail’) of v (Sketch 22.1b). In the second step, draw a 
vector vres, the resultant vector, originating from the tail 
of u to the head of v (Sketch 22.1c). Reversing the order of 
addition leads to the same result; that is, the same vres is 
obtained whether u is added to v or v to u. To calculate the 
magnitude of vres, note that

v2
res �= (u + v)⋅(u + v) = u⋅u + v⋅v + 2u⋅v  

= u2 + v2 + 2uv cos θ′� (22.7a)

v

u

θ

u + v

v

u

θ v

u

θ

π – θ

(a) (b) (c)

Sketch 22.1
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where θ′ is the angle between u and v. In terms of the angle 
θ = π – θ′ shown in the Sketch, and cos(π – θ) = –cos θ, 

v2
res = u2 + v2 – 2uv cos θ� Law of cosines   (22.7b)

which is the law of cosines for the relation between the 
lengths of the sides of a triangle.

v

u

(a)

v
–u

–u

v

vres = v – u

(b)

Sketch 22.2

Subtraction of u from v amounts to addition of –u to v. 
It follows that in the first step of subtraction –u is drawn 
by reversing the direction of u (Sketch 22.2a). Then, the 
second step consists of adding –u to v by using the strat-
egy shown in the Sketch; a resultant vector vres is drawn by 
joining the tail of –u to the head of v (Sketch 22.2b).

x

y

z

v
u

θ
u × v

uv sin θ

x

y

z

v
u

θ

v × u
uv sin θ

(a) (b)

Sketch 22.3

Vector multiplication is represented graphically by 
drawing a vector (using the right–hand rule) perpendicu-
lar to the plane defined by the vectors u and v, as shown in 
Sketch 22.3. Its length is equal to uv sin θ, where θ is the 
angle between u and v. Note that u × v (Sketch 22.3a) is 
opposite in direction to v × u (Sketch 22.3b).



The chemist’s toolkit 23   Determinants

A 2 × 2 determinant is the entity

= −a b
c d

ad bc	 2×2 Determinant   (23.1a)

A 3 × 3 determinant is evaluated by expanding it as a sum 
of 2 × 2 determinants:

a b c
d e f
g h i  

a
e f
h i

b
d f
g i

c
d e
g h= − +

= − − − + −a ei fh b di fg c dh eg( ) ( ) ( )�
3×3 Determinant   (23.1a)

Note the sign change in alternate columns (b occurs with a 
negative sign in the expansion). An important property of 
a determinant is that if any two rows or any two columns 
are interchanged, then the determinant changes sign:

Exchange columns:  

	        = − = − − = −b a
d c

bc ad ad bc a b
c d

( )

Exchange rows: = − = − − = −c d
a b

cb da ad bc a b
c d

( )

An implication is that if any two columns or rows are 
identical, then the determinant is zero.
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A matrix is an array of numbers arranged in a certain 
number of rows and a certain number of columns; the 
numbers of rows and columns may be different. The rows 
and columns are numbered 1, 2, … so that the number at 
each position in the matrix, called the matrix element, has 
a unique row and column index. The element of a matrix 
M at row r and column c is denoted Mrc. For instance, a  
3 × 3 matrix is

M
M M M
M M M
M M M

11 12 13

21 22 23

31 32 33

=

















The trace of a matrix, Tr M, is the sum of the diagonal 
elements.

M MTr 
n

nn∑= � (24.1)

In this case

Tr M = M11 + M22 + M33

A unit matrix has diagonal elements equal to 1 and all 
other elements zero. A 3 × 3 unit matrix is therefore

1
1 0 0
0 1 0
0 0 1

=














Matrices are added by adding the corresponding matrix 
elements. Thus, to add the matrices A and B to give the sum 
S = A + B, each element of S is given by

Src = Arc + Brc� (24.2)

Only matrices of the same dimensions can be added 
together.

Matrices are multiplied to obtain the product P = AB; 
each element of P is given by

P A Brc rn
n

nc∑= � (24.3)

Matrices can be multiplied only if the number of columns in 
A is equal to the number of rows in B. Square matrices (those 
with the same number of rows and columns) can therefore 
be multiplied only if both matrices have the same dimension 
(that is, both are n × n). The products AB and BA are not 
necessarily the same, so matrix multiplication is in general 
‘non-commutative’.

Brief illustration 24.1:  Matrix addition and multiplication

Consider the matrices

M N1 2
3 4

and 5 6
7 8

=






=






Their sum is

S 1 2
3 4

5 6
7 8

6 8
10 12

=






+






=






and their product is

P 1 2
3 4

5 6
7 8

1 5 2 7 1 6 2 8
3 5 4 7 3 6 4 8

19 22
43 50

=












= × + × × + ×
× + × × + ×







=






An n × 1 matrix (with n elements in one column) is 
called a column vector. It may be multiplied by a square  
n × n matrix to generate a new column vector, as in

P
P
P

A A A
A A A
A A A

B
B
B

1

2

3

11 12 13

21 22 23

31 32 33

1

2

3

















=

















×

















The elements of the two column vectors need only one 
index to indicate their row. Each element of P is given by

P A Br rn
n

n∑= � (24.4)

A 1 × n matrix (a single row with n elements) is called a 
row vector. It may be multiplied by a square n × n matrix 
to generate a new row vector, as in

P P P B B B
A A A
A A A
A A A

( ) ( )1 2 3 1 2 3

11 12 13

21 22 23

31 32 33

= ×

















In general the elements of P are
P B Ac n

n
nc∑= � (24.5)

Note that a column vector is multiplied ‘from the left’ by 
the square matrix and a row vector is multiplied ‘from the 
right’. The inverse of a matrix A, denoted A−1, has the prop-
erty that AA−1 = A−1A = 1, where 1 is a unit matrix with the 
same dimensions as A.

Brief illustration 24.2:  Inversion

Mathematical software gives the following inversion of a 
matrix A:

Matrix Inverse

A A−1

A = 1 2
3 4





 A−1 =

 

2 1
3
2

1
2

−
−













The chemist’s toolkit 25   Matrix methods 
for solving eigenvalue equations

In matrix form, an eigenvalue equation is 
Mx = λx� Eigenvalue equation   (25.1a)

where M is a square matrix with n rows and n columns, λ 
is a constant, the eigenvalue, and x is the eigenvector, an 
n × 1 (column) matrix that satisfies the conditions of the 
eigenvalue equation and has the form:

�
x

x
x

xn

1

2=



















In general, there are n eigenvalues λ(i), i = 1, 2, … , n, and 
n corresponding eigenvectors x(i). Equation 25.1a can be 
rewritten as

(M − λ1)x = 0� (25.1b)

where 1 is an n × n unit matrix, and where the property 
1x = x has been used. This equation has a solution only if the 
determinant |M − λ1| of the matrix M − λ1 is zero. It follows 
that the n eigenvalues may be found from the solution of the 
secular equation:

|M − λ1| = 0� (25.2)

Brief illustration 25.1:  Simultaneous equations

Consider the matrix equation

x
x

x
x

x
x

1 2
3 4

rearranged into 1 2
3 4

0 

1

2

1

2

1

2

λ

λ
λ















 =











−
−















 =

From the rules of matrix multiplication, the latter form 
expands into

x x
x x
(1 ) 2
3 (4 )

01 2

1 2

λ
λ

− +
+ −











=

which is simply a statement of the two simultaneous equa-
tions

(1 − λ)x1 + 2x2 = 0 and 3x1 + (4 − λ)x2 = 0

The condition for these two equations to have solutions is 

M 1 1 2
3 4

(1 )(4 ) 6 0λ λ
λ

λ λ− = −
−

= − − − =

This condition corresponds to the quadratic equation

λ2 − 5λ − 2 = 0

with solutions λ = +5.372 and λ = −0.372, the two 
eigenvalues of the original equation.

The n eigenvalues found by solving the secular equations 
are used to find the corresponding eigenvectors. To do so, 
begin by considering an n × n matrix X the columns of 
which are formed from the eigenvectors corresponding to 
all the eigenvalues. Thus, if the eigenvalues are λ1, λ2, …, and 
the corresponding eigenvectors are

� �
�

�
x x x

x
x

x

x
x

x

x
x

xn n

n

n

n

n
n

(1)

1
(1)

2
(1)

(1)

(2)

1
(2)

2
(2)

(2)

( )

1
( )

2
( )

( )

=





















=





















=





















� (25.3a)

then the matrix X is

X x x x�
� �

�

�

…
�

x
x

x

x
x

x

x
x

x

( )n

n n

n

n

n
n

(1) (2) ( )

1
(1)

2
(1)

(1)

1
(2)

2
(2)

(2)

1
( )

2
( )

( )

= =





















� (25.3b)

Similarly, form an n × n matrix Λ with the eigenvalues λ 
along the diagonal and zeroes elsewhere:

�

�

� � �
�

0 0
0 0

0 0 n

1

2ΛΛ

λ
λ

λ

=



















� (25.4)

Now all the eigenvalue equations Mx(i) = λix(i) may be com-
bined into the single matrix equation

MX = XΛ � (25.5)

Brief illustration 25.2:  Eigenvalue equations

In Brief illustration 25.1 it is established that if 1 2
3 4

M =






 

then λ1 = +5.372 and λ2 = –0.372. Then, with eigenvectors 

x

x
1 1

(1)

2
(1)

x =












( )  and 
x

x
2 1

(2)

2
(2)

x =












( )  form

x x

x x
5.372 0
0 0.372

 1
1

1
2

2
1

2
2

X ΛΛ=












=
−







( ) ( )

( ) ( )

The expression MX = XΛ becomes

x x

x x

x x

x x
1 2
3 4

5.372 0
0 0.372

1
(1)

1
(2100)

2
(1)

2
(2)

1
(1)

1
(2)

2
(1)

2
(2)



















=










 −






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which expands to

+ +

+ +













=
−

−













x x x x

x x x x

x x

x x

2 2
3 4 3 4

5.372 0.372
5.372 0.372

1
(1)

2
(1)

1
(2)

2
(2)

1
(1)

2
(1)

1
(2)

2
(2)

1
(1)

1
(2)

2
(1)

2
(2)

This is a compact way of writing the four equations

x x x x x x2 5.372       2 0.3721
1

2
1

1
1

1
2

2
2

1
2+ = + = −( ) ( ) ( ) ( ) ( ) ( )

x x x x x x3 4 5.372     3 4    0.3721
(1)

2
(1)

2
(1)

1
(2)

2
(2)

2
(2)+ = + = −

corresponding to the two original simultaneous equations 
and their two roots.

Finally, form X −1 from X and multiply eqn 25.5 by it 
from the left:

X −1MX = X −1XΛ = Λ� (25.6)

A structure of the form X −1MX is called a similarity 
transformation. In this case the similarity transforma-
tion X −1MX makes M diagonal (because Λ is diagonal). 
It follows that if the matrix X  that causes X −1MX to be 
diagonal is known, then the problem is solved: the diag-
onal matrix so produced has the eigenvalues as its only 
nonzero elements, and the matrix X  used to bring about 
the transformation has the corresponding eigenvectors 
as its columns. In practice, the eigenvalues and eigenvec-
tors are obtained by using mathematical software.

Brief illustration 25.3:  Similarity transformations

To apply the similarity transformation to the matrix 1 2
3 4







 

from Brief illustration 25.1 it is best to use mathematical 
software to find the form of X and X −1. The result is

=
−







=
−







−−0.416 0.825
0.909 0.566

0.574 0.837
0.922 0.422

1X X

This result can be verified by carrying out the multiplication 

=
−











 −







=
−







−− 0.574 0.837
0.922 0.422

1 2
3 4

0.416 0.825
0.909 0.566

5.372 0
0 0.372

1X MX

The result is indeed the diagonal matrix Λ calculated in 
Brief illustration 25.2. It follows that the eigenvectors x(1) 
and x(2) are

=






=
−







( ) ( )0.416
0.909

0.825
0.566

 1 2x x
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Gaussian functions

An exponential function is a function of the form 

f x a( ) e bx= − � Exponential function   (26.1)

This function has the value a at x = 0 and decays toward 
zero as x → ∞. This decay is faster when b is large than 
when it is small. The function rises rapidly to infinity as 
x → −∞. See Sketch 26.1.
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Sketch 26.1

The general form of a Gaussian function is

= σ− −f x a( ) e x b( ) /22 2

� Gaussian function   (26.2)

The graph of this function is a symmetrical bell-shaped 
curve centred on x = b; the function has its maximum 
values of a at its centre. The width of the function, meas-
ured at half its height, is δx = 2σ(2 ln 2)1/2; the greater σ, the 
greater is the width at half-height. Sketch 26.1 also shows a 
Gaussian function with b = 0 and 2σ 2 = 1.
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magnetic fields

Standard electromagnetic theory gives the magnetic field 
at a point r from a point magnetic dipole μ as

r r
r r4

3( )0
3 2BB µµ µµµ= −

π
− ⋅



 � (27.1)

where μ0 is the vacuum permeability (a fundamental 
constant with the defined value 4π × 10−7 T2 J−1 m3). The 
component of magnetic field in the z-direction is

r
r

z
r

  
4

3( )
zz

0
3 2B

µµµ µ= −
π

− ⋅





� (27.2)

with z = r cos θ, the z-component of the distance vector r. 
If the magnetic dipole is also parallel to the z-direction, it 
follows that

��� �� ��� ��
�

r
r r

r r
  

4
3( cos )( cos )

4
(1 3cos )z

0
3 2

0
3

2B
µ µ µ θ θ µµ θ= −
π

−








 = −

π
−  (27.3) 

μz
zμ⋅r
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transform

Sketch 28.1
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Fourier transform

Inverse Fourier transform

A Fourier transform expresses any waveform as a super-
position of harmonic (sine and cosine) waves. If the wave-
form is S(t), then the contribution I(ν) of the oscillating 
function cos(2πνt) is given by the integral

I S t t t( ) ( )cos(2 )d
0∫ν ν= π
∞

� (28.1)

If the signal varies slowly, then the greatest contribution comes 
from low-frequency waves; rapidly changing features in the 
signal are reproduced by high-frequency contributions. If the 
signal is a simple exponential decay of the form S(t) = S0e−t/τ, 
the contribution of the wave of frequency ν is

I S t t S( ) e cos(2 )d
1 (2 )

t
0

/ 0
20∫ν ν τ

ντ
= π =

+ π
τ−∞

� (28.2)

Sketch 28.1 shows a fast and slow decay and the corre-
sponding frequency contributions: note that a slow decay 
has predominantly low-frequency contributions and a fast 
decay has many high-frequency contributions.

If an experimental procedure results in the function I(ν) 
itself, then the corresponding signal can be reconstructed 
by forming the inverse Fourier transform:

S t I t( ) 2 ( )cos(2 )d
0∫ ν ν ν= π π
∞

� (28.3)

There are complex versions of these cosine transforms, as 
described below.

Fourier transforms are applicable to spatial functions 
too. Their interpretation is similar but it is more appropri-
ate to think in terms of the wavelengths of the contribut-
ing waves. Thus, if the function varies only slowly with 
distance, then its Fourier transform has mainly long-
wavelength contributions. If the features vary quickly 
with distance (as in the electron density in a crystal), then 
short-wavelength contributions feature.

Further information
Some insight into the physical significance of taking a 
Fourier transform can be obtained by considering the pro-
cess for analysing a wave of general form, like that at the 
top of each part of Sketch 28.2. According to eqn 28.1, the 
procedure involves forming the product of the waveform 
and a cosine wave with frequency ν, and then determining 
the area under the product. 

10 Hz cosine wave 20 Hz cosine wave 30 Hz cosine wave

Waveform, S(t)

Product, S(t) cos(2πνt)

Sketch 28.2
When S(t) is multiplied by a cosine wave with frequency 

10 Hz, the oscillations in the two functions largely coin-
cide, with the result that the product S t t( )cos(2 )νπ  has 
more positive peaks than negative peaks, and therefore 
a non-zero area. The wave of frequency 10 Hz, therefore 
makes a significant contribution. When the procedure is 
repeated with a cosine function oscillating at 20 Hz, the 
product also results in a non-zero area, so a cosine func-
tion oscillating at this frequency also makes a significant 
contribution to the original waveform. However, if the 
frequency of the cosine function is 30 Hz, the product 
has as many positive and negative peaks and the area is 
essentially zero. A cosine function at this frequency makes 
a negligible contribution to the waveform.
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The most general formulation of a Fourier transform is 
to express the function f(t) as a superposition of cosine and 
sine functions, not just cosine functions. The two types 
of functions can be handled simultaneously by using de 
Moivre’s relation x xe cos isinxi = +  and writing

�f t f( ) 1
2π ( )e d2 i∫ ν ν= νπ

−∞

∞
� (28.4a)

where �f ( )ν  is the Fourier transform of f(t), and can be 
interpreted as the amplitude of the contribution of the 
cosine and sine waves in the superposition that recreates 
the function f(t). The inverse relation is

�f f t t( ) ( )e dt2πi∫ν = ν−

−∞

∞
� (28.4b)

The cosine contribution is given by the real part of 
�f ( )ν  and the sine contribution is given by the imaginary 
part.

Brief illustration 28.1:  The Fourier transform of an 
oscillating, exponentially decaying wave

The introductory part of this Toolkit illustrated the result of 
a cosine Fourier transformation of an exponential decay. It 
is instructive to consider the complex version of that calcu-
lation and to generalize it to a function that oscillates with 
a frequency ν0 as it decays. To avoid the repetition of many 
factors of 2π, henceforth, write 2πν = ω. Then the (complex) 
function in the time domain is

Oscillating
component

Decaying
exponential� �

=






≥

<
ω − τf t f t

t
( )

0
e e for     0 

for     0
t t

0
i /0

The observed signal is the real part of f(t), bearing in mind 
that xRe e cosxi = . See Sketch 28.3 (which also displays the 
Fourier transform, as explained below). The Fourier trans-
form of this function is

�f f t f t( ) e e e d e dt t t t
0

i / i
00

i 1/

0
0 0∫ ∫ν = =ω τ ω ω ω τ{ }( )− −∞ − −∞

� (28.5)

f fe
i 1/

  1
i 1/

t

0

i 1/

0
0

0
0

0

ω ω ω ω τ( ) ( )=
− − τ

= −
− −

ω ω τ{ }( )− −
∞

� (28.6)

The fraction of the right has both real an imaginary parts; 
they can be extracted by multiplying the numerator and 
denominator by the complex conjugate of the denominator

�f f

f

1
i 1/

i 1/
i 1/

i 1/
1/

0
0

0

0

0
0

0
2 2

ν
ω ω τ

ω ω τ
ω ω τ

ω ω τ
ω ω τ

( )
( )
( )

( )
( )

( )= −
− −

×
− − −
− − −

=
− +

− + � (28.7)

The real part of �f ( )ν  is therefore

�f f fRe  ( ) /
1/ 1

0

0
2 2

0

0
2 2

ν τ
ω ω τ

τ
ω ω τ( ) ( )=

− +
=

− +
� (28.8)

which is essentially the same as in eqn 28.2 with the excep-
tion that the frequency 2πν = ω has been replaced by ω0 − ω.
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A charge Q 1 (units: coulomb, C) gives rise to a Coulomb 
potential ϕ (units: volt, V) , as explained in The chemist’s 
toolkit 6. The potential energy (units: joule, J, with 1 J = 
1 V C) of a second charge Q in that potential is

Qφ=E _
P � (29.1)

In one dimension, the electric field strength (units: volt 
per metre, V m−1), E, is the negative of the gradient of the 
electric potential ϕ:

E= _ φ
x

d
d � Electric field strength   (29.2)

In three dimensions the electric field is a vector, and

EE= _ φ∇ � (29.3)

The electric field between two plane parallel plates separat-
ed by a distance l, and between which there is a potential 
difference Δϕ, is uniform and given by

E= _ φ∆
l � (29.4)

A charge Q experiences a force proportional to the electric 
field strength at its location:

QE=Felectric � (29.5)

A potential gives rise to a force only if it varies with 
distance.
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method of partial fractions

To solve an integral of the form

∫= − −I a x b x x1
( )( )d � (30.1)

where a and b are constants with a ≠ b, use the method of 
partial fractions in which a fraction that is the product of 
terms (as in the denominator of this integrand) is written 
as a sum of fractions. To implement this procedure write 
the integrand as

a x b x b a a x b x
1

( )( )
1 1 1

− − = − − − −






Then integrate each term on the right. It follows that

I b a
x

a x
x

b x

b a a x b x

1 d d

1 ln 1 ln 1 constant

��� ���

∫ ∫( )= − − − −

= − − − −




 + � (30.2)

Further information
Although the condition a ≠ b has been specified, the result 
is also valid for a = b provided the equality is interpreted 
as the limit b → a. Thus, write b = a + δ, with δ → 0; then, 
by using ln(1 + z) = z + ½z2 +… = z + O(z2),

b a a x b x

a a a x a x

lim 1 ln 1 ln 1

lim 1 ln 1 ln 1
0

0 δ δ

− − − −






= + − − − + −






δ

δ

→

→

a x
a x a x

a x O a x

lim 1 ln lim 1 ln 1

lim 1 1

0 0

0

2

δ
δ

δ
δ

δ
δ δ( )

= + −
− = + −







= − +





= −

δ δ

δ

→ →

→  

That is, in this limit

a x
x a x

1 d 1 constant2∫ ( )−
= − +

Integral 
A.2

Integral 
A.2




