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Supplementary Section 6S.8 
Adequacy

CHOOSING OPERATORS FOR FORMAL LANGUAGES
There are many different possible logical languages and formal systems and the same 
logical truths and inferences may be expressed in many different ways. For example, 
PL has only twenty-six variables, but we can devise methods to construct indefinitely 
many variables by indexing. We can also choose different logical operators. In this 
section, we will look at alternative languages for propositional logic, with an eye to re-
ducing the number of operators from the five of PL without weakening our language 
and its powers of expression. Along the way we will do some metalogical proofs that 
can give you a taste of the kind of work that can come next in logic.

PL uses one unary operator, ∼, and four binary operators: •, ∨, ⊃, and ≡. There 
are only four possible unary operators in a bivalent logic (i.e., a logic with two truth 
values). Given one variable, and a truth table of two rows, there are only four possible 
distributions of truth values. Any unary operator will produce one of the four tables 
U1–U4.

 U1 U2 U3 U4

α

1 1

1 0

α

1 1

0 0

∼ α

0 1

1 0

α

0 1

0 0

Only the negation, U3, is useful and has a common name. U2 just repeats the value 
of the given formula, and so is otiose. We could call U1 a truth operator, since it takes 
the value ‘1’ whatever the value of α. But, if we want a formula that produces a truth 
no matter what the values of the component variables, we can just use any tautology, 
like an instance of the law of the excluded middle, at 6S.8.1 and so do not need a truth 
operator in our language.

6S.8.1 P ∨ ∼P
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Similarly, U4 is a falsity operator, always giving the value ‘0’. If we want a formula to 
produce falsity, we can use any contradiction, like 6S.8.2.

6S.8.2 P • ∼P

The situation is just a bit more complicated with binary operators. There are sixteen 
possible combinations of truth values for two propositions, sixteen possible truth 
tables. The following chart presents all of them.

α β ∨ ⊃ ≡ •

1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0

1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0

0 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0

0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0

Notice that the first column after the variables has ‘1’ in all four rows; the next four 
columns have three ‘1’s and one ‘0’; the next six columns have all possible distribu-
tions of two ‘1’s and two ‘0’s; four columns of three ‘0’s and one ‘1’ follow; lastly, there 
is the single column of all ‘0’s. There are no other possible distributions of ‘1’s and ‘0’s 
in a four-row truth table.

Only four of the possible sixteen possible truth tables have names in PL. We could 
give names to others and include them in our language. For example, we could add 
an operator for exclusive disjunction, the column just after the one for the ≡. But the 
more operators we include, the more truth tables we have to remember. A language 
can get clunky and awkward with too many elements. Furthermore, when we want 
to prove theorems about our formal language, it is useful to have as few elements 
of the language as possible. Given our five operators, we can produce formulas that 
yield every one of the twelve unnamed columns above, which shows that we need 
not add more operators to PL in order to increase its expressive capacity. It is kind 
of a fun task.

In the other direction, we might want to reduce the vocabulary of our language. 
Metalinguistic proofs tend to be easier with a smaller vocabulary. But we want to 
maintain the expressive capacity of our language. It’s fine to remove some of the 
vocabulary as long as there are other ways of saying what we want to say. To use an 
analogy from natural language, we could ban the word ‘bachelor’ from English as 
long as we still had the words ‘unmarried’ and ‘man’. But, if we got rid of all ways 
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of saying that some man is unmarried, then we would not be able to express some 
propositions.

When designing logical languages and formal systems, then, we have to balance the 
ease of using the language with the ease of constructing metalinguistic proofs about 
the language. We want to make sure both that the language is manageable and that it 
allows us to say what we want to say.

EXERCISES 6S.8a

There are sixteen possible truth tables for propositions with 
two variables, listed in the previous chart . We have simple 
ways to represent four of the sixteen, with the four binary 
operators: α • β; α ∨ β; α ⊃ β; α ≡ β. Devise sentences to 
represent each of the other twelve combinations of truth 
values. (Hint: You need not use two variables for each; 
sometimes a formula with a single variable will work.)

1. 1111

2. 1101

3. 0111

4. 1100

5. 1010

6. 0110

7. 0101

8. 0011

9. 0100

10. 0010

11. 0001

12. 0000

ELIMINATING THE BICONDITIONAL AND CONDITIONAL
One natural way to reduce the vocabulary of our language is to eliminate operators, as 
long as we can construct statements with the same truth values that those operators 
produced. We have seen how to eliminate the biconditional by defining it in terms of 
the conditional and the conjunction. This was the first of the rules we called material 
equivalence. Call an operator superfluous, relative to a given language, if it can be 
defined in terms of other operators of the language. With this definition, we can prove 
the metatheorem 6S.8.3.

6S.8.3 The biconditional is superfluous in PL.
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To prove 6S.8.3, we just need to show that ‘α ≡ β’ and ‘(α ⊃ β) • (β ⊃ α)’ are logi-
cally equivalent. We can do this by method of truth tables.

 (α ⊃ β) • (β ⊃ α)

1 1 1 1 1 1 1

1 0 0 0 0 1 1

0 1 1 0 1 0 0

0 1 0 1 0 1 0

α ≡ β

1 1 1

1 0 0

0 0 1

0 1 0

Any statement of the form ‘α ≡ β’ can thus be replaced with a more complex state-
ment that does not use ‘≡’.

Notice that the conditional is superfluous also, which we can see by considering the 
equivalence we called the rule of material implication.

6S.8.4 The conditional is superfluous in PL. 

∼ α ∨ β

0 1 1 1

0 1 0 0

1 0 1 1

1 0 1 0

α ⊃ β

1 1 1

1 0 0

0 1 1

0 1 0

Let’s call the above method of proving 6S.8.3 and 6S.8.4 semantic, for their uses 
of the truth values of PL. An alternative way of proving 6S.8.4 uses metalinguistic 
versions of conditional and indirect proof but also appeals to the semantics for PL. 
To show that two statements are logically equivalent, in this second way, we show 
that each entails the other. For 6S.8.4, first we assume ‘α ⊃ β’ is true and show that 
the truth of ‘∼α ∨ β’ follows. Assume not. Then some formula of the form ‘∼α ∨ β’ is 
false. Then the formula replacing α will have to be true (to make ∼α false) and the 
formula replacing β will have to be false. But, those values will make ‘α ⊃ β’ false, 
contradicting our assumption.

Next, we assume ‘∼α ∨ β’ is true and show that the truth of ‘α ⊃ β’ follows. Assume 
that some formula of the form ‘α ⊃ β’ is false. Then the value of the formula replacing 
α must be true and the value of the formula replacing β must be false. But, on those 
values, ‘∼α ∨ β’ is false, again contradicting our assumption. QED.
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We can prove 6S.8.3 by the same method. First we assume ‘α ≡ β’ and show that 
‘(α ⊃ β) • (β ⊃ α)’ follows. Then, we assume ‘(α ⊃ β) • (β ⊃ α)’ and show that ‘α ≡ β’ 
follows. I leave the details to the reader.

Both of these semantic methods for proving 6S.8.3 and 6S.8.4 produce the same 
results, since they depend on the same truth values. A third method of proving the 
equivalence of two statements, one that does not invoke semantics directly, is to de-
rive one from the other using the rules of inference we introduced in chapter 3. For 
6S.8.4, for example, we assume ‘α ⊃ β and derive ‘∼α ∨ β’; then we assume ‘∼α ∨ β’ 
and derive ‘α ⊃ β’. In this case, our proof will use metalinguistic formulas rather than 
formulas of PL, but the same rules apply.

So, as a methodological observation, we have on our hands two distinct notions of 
logical equivalence.

LE1 Two statements are logically equivalent if, and only if, they have 
the same values in every row of the truth table.

LE2 Two statements are logically equivalent if, and only if, each is 
derivable from the other.

We hope that LE1 and LE2 yield the same results. In order to show that this is the 
case, we must show that our formal system is sound.

Combining 6S.8.3 and 6S.8.4, we discover that any sentence that can be written 
as a biconditional can be written in terms of negation, conjunction, and disjunction. 
To eliminate the biconditional and the conditional from a sentence like the first at 
6S.8.5, which is naturally translated using the ≡, we use two steps. After regimenting 
the proposition directly as a biconditional, we eliminate the biconditional and then 
get rid of the conditional.

6S.8.5 Dogs bite if, and only if, they are startled.
 B ≡ S
 (B ⊃ S) • (S ⊃ B)
 (∼B ∨ S) • (∼S ∨ B)

Several questions may arise from these considerations about eliminating operators. 
First, how can we be sure that all sentences can be written with just the five (or, now, 
three) operators of PL? Second, can we eliminate more operators? What is the fewest 
number of operators that we need? We will answer these questions in the remainder 
of this section.

DEFINING ADEQUACY AND DISJUNCTIVE NORMAL FORM
A set of operators is called adequate if, and only if, corresponding to every possible 
truth table there is at least one sentence using only those operators. By “every pos-
sible truth table,” I mean every combination of ‘1’s and ‘0’s in the column under the 
main operator. We want our operators to be adequate so that we can construct for-
mulas with all possible truth conditions. If our set of operators is adequate, then our 
propositional logic will be able to say anything that any propositional logic can say.
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To give you a taste of what we are after, consider a severely limited adequacy result.
6S.8.6 Negation and conjunction are adequate in languages with only 

one propositional variable.

We can prove 6S.8.6 by sheer force. There are only four possible truth tables: 11, 10, 
01, 00. Here are statements for each of them that use no operators other than negation 
and conjunction.

α

1

0

∼  (α • ∼ α)

1 1 0 0 1

1 0 0 1 0

∼ α

0 1

1 0

α • ∼ α

1 0 0 1

0 0 1 0

Returning to our discussion of languages with any number of variables, we want to 
demonstrate the general theorem that the five operators of PL are adequate. By 6S.8.3 
and 6S.8.4, we know that the five operators are adequate if, and only if, the three (ne-
gation, conjunction, and disjunction) are adequate.

In order to prove a general adequacy theorem, we will consider the set of wffs of PL 
that are in disjunctive normal form (DNF). A sentence is in DNF if it is:

a single letter or a negation of a single letter; or
a conjunction of single letters or negations of single letters; or
a disjunction of single letters, negations of single letters, or conjunctions of 

single letters or negations of single letters; or
a series of such disjunctions.

6S.8.7 lists some sentences in DNF. 
6S.8.7 Some statements that are in DNF
 P
 P • ∼Q
 ∼P ∨ Q
 (P • Q) ∨ (∼P • Q)
 ∼P ∨ ∼Q ∨ (∼P • ∼Q)

Note that we can drop brackets here among three or more conjuncts or disjuncts, 
though we still need brackets when conjoining disjunctions or disjoining conjunc-
tions. 6S.8.8 lists some sentences that are not in DNF.

6S.8.8 Some statements that are not in DNF
 ∼(P • Q)
 P ⊃ Q
 (P • ∼Q) ∨ (∼P ≡ Q)
 (P ∨ Q) • (∼P ∨ ∼Q)
 P ∨ ∼Q ∨ ∼(P ∨ Q)



p r o v i n g  a de q u a c y  a n d  i n a de q u a c y  f o r  fa m i l i a r  o p e r a t o r S   7

Notice that the first and last sentences in 6S.8.8 are logically equivalent to related 
sentences in DNF. ‘∼(P • Q  )’ is logically equivalent to ‘∼P ∨ ∼Q’ , which is in DNF. 
‘P ∨ ∼Q ∨ ∼(P ∨ Q  )’ is logically equivalent to ‘P ∨ ∼Q ∨ (∼P • ∼Q  )’, which, again, 
is in DNF. These equivalences are easily shown by constructing the appropriate 
truth tables or applying De Morgan’s law.

EXERCISES 6S.8b 

Which of the following sentences are in DNF?

1. (P • ∼Q  ) ∨ (P • Q  )

2. (P • Q • R) ∨ (∼P • ∼Q • ∼R)

3. ∼P ∨ Q ∨ R

4. (P ∨ Q  ) • (P ∨ ∼R)

5. (P • Q  ) ∨ (P • ∼Q  ) ∨ (∼P • Q  ) ∨ (∼P • ∼R)

6. (∼P • Q  ) • (P • R) ∨ (Q • ∼R)

7. (P • ∼Q • R) ∨ (Q • ∼R) ∨ ∼Q

8. ∼(P • Q  ) ∨ (P • R)

9. P • Q
10. ∼P

PROVING ADEQUACY AND INADEQUACY FOR  
FAMILIAR OPERATORS
We have seen that the set of five operators of  PL is adequate if the set of three {∼, •, ∨} 
is. The proof of 6S.8.9 will show that both sets are indeed adequate.

6S.8.9 The set of negation, conjunction, and disjunction {∼, •, ∨} is adequate.

The proof of 6S.8.9 proceeds by cases. We will see a way to construct a sentence 
using only the three propositional operators for any possibility of combinations of 
truth values in any truth table.

For any size truth table, with any number of propositional operators, there are three 
possibilities for the column under the main operator.
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Case 1: Every row is false.
Case 2: There is one row that is true, and every other row is false.
Case 3: There is more than one row that is true. (Perhaps even all the rows 

are true.)

For Case 1, conjoin any variable with its negation. If you want to use all of a set of 
variables, you can conjoin them to the resulting contradiction. So, if you have vari-
ables P, Q  , R, S, and T, you can write, ‘P • ∼P • Q • S • T’. The resulting formula, 
in DNF, is false in every row, since each row contains a contradiction. It uses only 
conjunction and negation.

For Case 2, consider the row in which the statement is true. Then, write a con-
junction which uses of all of the propositional variables in the original formula or 
their negations in the following way. If the variable is true in the row in which the 
complex proposition is true, use the variable itself. If the variable is false in that row, 
use its negation instead.

The resulting formula is in DNF and is true in only the prescribed row. For exam-
ple, consider a formula with two variables, P and Q   , and the column under the main 
operator, shown below. The formula may be as complicated as we wish. We could be 
considering ‘∼(∼P ∨ ∼ ∼Q  )’ or ‘∼[(P ∨ P) ⊃ (Q • ∼ ∼Q  )]’, each of which yields the 
given truth table. We are concerned to construct a formula, in DNF, which matches 
the single column under the main operator in any such formula of  PL.

P Q Main Operator

1 1 0

1 0 1

0 1 0

0 0 0

We consider the second row only, in which P is true and Q is false. Our conjunction 
will be ‘P • ∼Q’. This formula is in DNF and it is logically equivalent, by definition, 
to whatever the original sentence was, no matter which of the five propositional op-
erators it used. In addition to the two I mentioned above, many different formulas 
will yield the same truth table. In fact, there are infinitely many ways to produce each 
truth table. We need just one for this proof.

For Case 3, we just repeat the method from Case 2 for each row in which the state-
ment is true. Then, we form the disjunction of all the resulting formulas. Again, the 
resulting formula will be in DNF and will be logically equivalent to the original for-
mula, no matter which operators it used. Here is an example.
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P Q R Main Operator

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

To construct a formula with that truth table, we need to consider only the first and 
fourth rows. In the first row, all variables are true. In the fourth, ‘P’ is true, but ‘Q’ and 
‘R’ are false. Our resultant formula will be ‘(P • Q • R) ∨ (P • ∼Q • ∼R)’. Punctuation 
can easily be added to make the formula well formed in PL. 

Thus, we have a method for producing a formula of PL, in DNF, for any possible 
truth table. Since DNF uses only negation, conjunction, and disjunction, the set 
{∼, •, ∨} is adequate, as 6S.8.9 claims. QED.

Given 6S.8.9 and the methods used in the proofs of the theorems at 6S.8.3 and 
6S.8.4, we can easily prove several other sets of operators adequate.

6S.8.10 The set {∨, ∼} is adequate.

To prove 6S.8.10, we use can use the method in the proof of 6S.8.9 to write a formula 
for any truth table using as operators only those in the set {∨, •, ∼}. Any statement of 
the form ‘α • β’ is equivalent to one of the form ‘∼(∼α ∨ ∼β)’. So, we can replace any 
occurrence of ‘•’ in any formula, according to the above equivalence. Whitehead and 
Russell take the set {∨, ∼} as their official operators in Principia Mathematica, though 
they introduce other operators by definition.

The proofs of 6S.8.11 and 6S.8.12 are just as straightforward. For 6S.8.11, we re-
quire a formula using conjunction and negation that is logically equivalent to ‘α ∨ β’. 
6S.8.12 is a little trickier. I leave the proofs of both to the reader.

6S.8.11 The set {•, ∼} is adequate.
6S.8.12 The set {∼, ⊃} is adequate.

We have seen that some pairs of operators are adequate to express any truth ta-
ble. Not all sets of pairs of operators are adequate. To show that a set of operators is 
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inadequate, we can show that there is some truth table that cannot be constructed 
using those operators.

6S.8.13 The set {⊃, ∨} is inadequate.

Recall that both ‘α ⊃ β’ and ‘α ∨ β’ are true when α and β are both true. Thus, 
using these operators we cannot construct a truth table with a false first row. {⊃, ∨} is 
inadequate, as 6S.8.13 says.

All of the sets of single operators in PL are inadequate. 6S.8.14 is an example.
6S.8.14 The set {⊃} is inadequate.

As with 6S.8.13, we cannot construct a truth table with 0 in the first row using 
just ⊃. To see this argument in a bit more careful detail, consider the truth table for 
conjunction. We want to construct a formula, using ⊃ as the only operator, which 
yields the same truth table, which we can write as 1000. Imagine that we have such a 
formula, and imagine the smallest such formula. Since the only way to get a 0 with ⊃ 
is with a false consequent, the truth table of the consequent of our formula must either 
be 1000 or 0000. Since we are imagining that our formula is the smallest formula that 
yields 1000, the consequent of our formula must be the latter, a contradiction. But you 
cannot form a contradiction using ⊃ alone, since 1 ⊃ 1 and 0 ⊃ 0 are both true. Since 
we cannot construct the contradiction, we cannot construct the conjunction.

We will need one more inadequate set.
6S.8.15 The set {∼} is inadequate.

To prove 6S.8.15, we need only one variable. The only possible truth tables with one 
variable and ∼ are 10 and 01. Thus, we cannot generate 11 or 00.

ADEQUACY FOR NEW OPERATORS
Despite the inadequacy of our single propositional operators, there are sets of single 
operators that are adequate. Consider the Sheffer stroke, ‘|’, which is also called alter-
native denial, or not-both.

α | β

1 0 1

1 1 0

0 1 1

0 1 0

6S.8.16 The set {|} is adequate.

To prove 6S.8.16, notice that ‘∼α’ is logically equivalent to ‘α | α’ and that ‘α • β’ is 
logically equivalent to ‘(α | β) | (α | β)’. By 6S.8.11, {∼, •} is adequate. 6S.8.16 follows.
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There is one more adequate single-membered set consisting of just the Peirce arrow, 
‘↓’, also called joint denial, or neither-nor.

α ↓ β

1 0 1

1 0 0

0 0 1

0 1 0

6S.8.17 The set {↓} is adequate.

The proof of 6S.8.17 uses 6S.8.10 and the equivalence of  ‘∼α’ to ‘α ↓ α’ and of  ‘α ∨ 
β’ to ‘(α ↓ β) ↓ (α ↓ β)’.

Both | and ↓ were initially explored by C. S. Peirce, though Henry Sheffer’s name 
is attached to the former for his independent work on it. Given that both the Sheffer 
stroke and the Peirce arrow are adequate, we could build systems of propositional 
logic around just those operators. Translations between such logical languages and 
English would be difficult, and our propositions would get complex quickly. We have 
to balance the virtues of having fewer operators with the virtues of languages with 
which it is easier to work. Also, we could easily add either the Sheffer stroke or the 
Peirce arrow to PL; they would be superfluous just like the biconditional.

THE LIMIT OF ADEQUACY
Lastly, we can prove that there are no other single, adequate operators, at 6S.8.18.

6S.8.18 ↓ and | are the only operators that are adequate by themselves.

Imagine we had another adequate operator, #. We know the first rows must be false, 
by the reasoning in the proofs of 6S.8.13 and 6S.8.14. Similar reasoning fills in the 
last row.

α # β

1 0 1

1 0

0 1

0 1 0
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Thus, ‘∼α’ is equivalent to ‘α # α’. Now, we need to fill in the other rows. If the 
remaining two rows are 11, then we have ‘|’. If the remaining two rows are 00, then we 
have ‘↓’. So, the only other possibilities are 10 and 01. 01 yields 0011, which is just ‘∼α’. 
10 yields 0101, which is just ‘∼β’. By 6S.8.15, {∼} is inadequate. QED.

Summary
PL uses five operators, though we can express the same claims with more operators 
or fewer, as few as the single Sheffer stroke or Peirce arrow. With more operators, our 
formulas can be shorter; with fewer operators, our formulas lengthen. Our selections 
of operators for a logic are to some degree arbitrary. As with our choices of rules of 
inference and equivalence, we construct systems that are aesthetically pleasing and 
that represent, to some extent, operations in natural language.

TELL ME MORE 

• What are the constraints on adequacy called soundness and completeness? See 6.4: 
Metalogic.

For Further Research and Writing
1. While there are no other adequate single sets of operators, there are other 

binary operators. Are there other adequate pairs? If so, which? If not, why not?

2. What are the meanings of the other possible binary operators? Can a good 
argument be made to use any others in translation from natural language into 
a formal language?

3. Why are there only unary and binary propositional operators?

4. Construct a formal language with the same expressive powers as PL, but with 
none of the standard operators. Discuss the challenges and results.

5. For a little more formal work, you may:
a.   Use the metalinguistic, semantic form that I used to prove 6S.8.4 to 

prove 6S.8.3;
b.  Prove 6S.8.11; or
c.  Prove 6S.8.12.

Suggested Readings
Haack, Susan. Philosophy of Logics. Cambridge: Cambridge University Press, 1978. Chapter 3 

has a nice discussion of adequacy.
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Hunter, Geoffrey. Metalogic. Berkeley: University of California Press, 1971. The results above 
are mostly contained in section 21. The references below are mostly found there as well. 
His notation is a bit less friendly, but the book is wonderful and could be the source of 
lots of papers.

Mendelson, Elliott. Introduction to Mathematical Logic, 4th ed. Boca Raton, FL: Chapman & 
Hall/CRC, 1997. Mendelson discusses adequacy in section 1.3. His notation is less 
friendly than Hunter’s, but the exercises lead you through some powerful results.

Peirce, Charles Sanders. “A Boolean Algebra with One Constant.” In Collected Papers, volume 
4, edited by Charles Hartshorne and Paul Weiss, sections 12–20; see also section 265. 
Cambridge, MA: Harvard University Press, 1933. Peirce’s work on singly adequate unary 
operators was unpublished, but preceded Post’s proof by forty years.

Post, Emil. “Introduction to a General Theory of Elementary Propositions.” In From Frege to 
Gödel: A Source Book in Mathematical Logic, 1879–1931, edited by Jean Van Heijenoort, 
264–283. Cambridge, MA: Harvard University Press, 1967. The notation is different, but 
the concepts are not too difficult. It would be interesting to translate into a current nota-
tion and present some of the results.

Whitehead, Alfred North, and Bertrand Russell. Principia Mathematica to *56. Cambridge: 
Cambridge University Press, 1997. Whitehead and Russell use disjunction and negation 
as their basic propositional operators, introducing the others by definition.

SOLUTIONS TO EXERCISES 6S.8A
There are infinitely many possibilities for each, but these are among the simplest. For 
more on this topic, see Ludwig Wittgenstein, Tractatus Logico-Philosophicus, section 
5.101.

  1.  1111 α ∨ ∼α
  2.  1101 α ∨ ∼β
  3.  0111 ∼(α • β)
  4.  1100 α
  5.  1010 β
  6.  0110 ∼α ≡ β
  7.  0101 ∼β
  8.  0011 ∼α
  9.  0100 α • ∼β
10.  0010 ∼α • β
11.  0001 ∼α • ∼β
12.  0000 α • ∼α

SOLUTIONS TO EXERCISES 6S.8B
Only 4, 6, and 8 are not in DNF, though 8 could be quickly put into DNF.


